卷积神经网络

卷积神经网络(CNN)是一种深度学习算法,特别擅长处理图像和视频数据。它通过模拟生物视觉系统的方式,利用卷积层、池化层等多层网络结构自动提取图像中的特征,进行分类、识别和预测。CNN被广泛应用于计算机视觉任务,如图像分类、人脸识别、物体检测等,已成为深度学习领域的重要模型之一。

基于机器学习的超分辨率技术

近些年来,超分辨率技术(Super resolution)越来越流行,许多公司将超分辨率技术整合到他们的工作之中。超分辨率的概念早就已经出现,而近些年来机器学习的进步才又一次把超分带入到媒体应用的领域之中。在如今4K/8K视频的时代,超分辨率技术只会越来越重要。

如何使用卷积神经网对图像上的每个像素进行分类

本章节我们将介绍如何对图像上的每个像素进行分类,其思想是创建图像上所有检测到的目标区域的地图。 基本上,我们想要的是下面的图像,其中每个像素都有与之关联的标签。最后我们将学习卷积神经网络(CNN)如何为我们完成这项工作。

如何通过深度学习,完成计算机视觉中的所有工作?

如今,深度学习是必经之路。大规模数据集以及深层卷积神经网络(CNN)的表征能力可提供超准确和强大的模型。但目前仍然只有一个挑战:如何设计模型?像计算机视觉这样广泛而复杂的领域,解决方案并不总是清晰明了的。计算机视觉中的许多标准任务都需要特别考虑:分类、检测、分割、姿态估计、增强和恢复以及动作识别。尽管最先进的网络呈现出共同的模式,但它们都需要自己独特的设计。

卷积神经网络中的四种基本组件

本文整理John Olafenwa的一篇博文,主要介绍了卷积神经网络采用的四种基本组件:Pooling、Dropouts、Batch Normalization、Data Augmentation ,分别解释了这些组件在现代CNN中所起的作用。另外,作者使用keras实现这几种组件,构建一个完整的CNN系统,更有助于读者理解这几种组件的作用和实现方法。

理解卷积神经网络中的自注意力机制

卷积神经网络(CNN)广泛应用于深度学习和计算机视觉算法中。虽然很多基于CNN的算法符合行业标准,可以嵌入到商业产品中,但是标准的CNN算法仍然有局限性,在很多方面还可以改进。这篇文章讨论了语义分割和编码器-解码器架构作为例子,阐明了其局限性,以及为什么自注意机制可以帮助缓解问题。

思考卷积神经网络(CNN)中各种意义

简单来说,CNN的目的是以一定的模型对事物进行特征提取,而后根据特征对该事物进行分类、识别、预测或决策等。在这个过程里,最重要的步骤在于特征提取,即如何提取到能最大程度区分事物的特征。如果提取的特征无法将不同的事物进行划分,那么该特征提取步骤将毫无意义。而实现这个伟大的模型的,是对CNN进行迭代训练。

关于卷积神经网络体系设计的理论实现

卷积神经网络,简称CNN,常用于视觉图像分析的深度学习的人工神经网络。形象地来说,这些网络结构就是由生物的神经元抽象拟合而成的。正如,每个生物神经元可以相互通信一般,CNN根据输入产生类似的通信输出。