一个卷积神经网络是由什么构成的?
demi 在 周四, 04/30/2020 - 15:51 提交
一个卷积神经网络主要由5种结构组成:输入层;卷积层;池化层;全连接层;Softmax层。
卷积神经网络(CNN)是一种深度学习算法,特别擅长处理图像和视频数据。它通过模拟生物视觉系统的方式,利用卷积层、池化层等多层网络结构自动提取图像中的特征,进行分类、识别和预测。CNN被广泛应用于计算机视觉任务,如图像分类、人脸识别、物体检测等,已成为深度学习领域的重要模型之一。
一个卷积神经网络主要由5种结构组成:输入层;卷积层;池化层;全连接层;Softmax层。
经过一段漫长时期的沉寂之后,人工智能正在进入一个蓬勃发展的新时期,这主要得益于深度学习和人工神经网络近年来取得的长足发展。更准确地说,人们对深度学习产生的新的兴趣在很大程度上要归功于卷积神经网络(CNNs)的成功,卷积神经网络是一种特别擅长处理视觉数据的神经网络结构。
积神经网络(CNN)是一种目前计算机视觉领域广泛使用的深度学习网络,与传统的人工神经网络结构不同,它包含有非常特殊的卷积层和降采样层(有些文章和书籍里又称之为池化层、汇合层),其中卷积层和前一层采用局部连接和权值共享的方式进行连接,从而大大降低了参数数量。
卷积神经网络(CNN) 具有局部互联、权值共享、下采样(池化)和使用多个卷积层的特点。使用多个卷积层 能够提取更深层次的特征,组合特征实现从低级到高级、局部到整体的特征提取。
将神经网络应用于大图像时,输入可能有上百万个维度,如果输入层和隐含层进行“全连接”,需要训练的参数将会非常多。如果构建一个“部分联通”网络,每个隐含单元仅仅只能连接输入单元的一部分,参数数量会显著下降。卷积神经网络就是基于这个原理而构建的。
传统的图像特征提取(特征工程)主要是基于各种先验模型,通过提取图像关键点、生成描述子特征数据、进行数据匹配或者机器学习方法对特征数据二分类/多分类实现图像的对象检测与识别。卷积神经网络通过计算机自动提取特征(表示工程)实现图像特征的提取与抽象,通过MLP实现数据的回归与分类。二者提取的特征数据都具不变性特征。
卷积神经网络由输入层,卷积层,激活函数,池化层,全连接层组成。卷积操作是使用一个二维的卷积核在一个批处理的图片上进行不断扫描。具体操作是将一个卷积核在每张图片上按照一个合适的尺寸在每个通道上面进行扫描。
现如今,卷积神经网络在人工智能领域应用的广泛性及重要性可谓是不言而喻。为了让大家对卷积的类型有一个清晰明了的认识,可以快速概述不同类型的卷积及其好处。在这里绘制了动图,以方便大家的学习(仅关注二维卷积)。
卷积层(Convolutional layer)主要是用一个采样器从输入数据中采集关键数据内容;池化层(Pooling layer)则是对卷积层结果的压缩得到更加重要的特征,同时还能有效控制过拟合。
关于深度卷积神经网络的前世今生,就不在此处进行过多的介绍。在此,主要对网络的各个组成部分进行简要介绍。深度卷积神经网络主要是由输入层、卷积层、激活函数、池化层、全连接层和输出层组成。