GPU

GPU,全称为图形处理单元(Graphics Processing Unit),是一种专用于处理图形和图像计算的处理器。起初,GPU主要用于图形渲染,但随着计算需求的增加,尤其是在科学计算、深度学习和其他并行计算领域,GPU的通用计算能力逐渐受到重视。

GPU相对于传统的中央处理单元(CPU)在设计上有一些显著的区别。CPU更适用于处理通用的控制流任务,而GPU则专注于高度并行的数据处理。GPU通常拥有大量的小型处理单元,被设计成能够同时处理大量相似的任务,例如图形渲染中的像素计算或深度学习中的矩阵运算。

总体而言,GPU在图形处理领域的成功应用和对并行计算需求的响应使其逐渐演变成为通用计算设备,广泛用于加速各种科学和工程计算应用。

为什么GPU计算能力如此强悍?

本文对CPU与GPU中的逻辑架构进行了对比。其中Control是控制器、ALU算术逻辑单元、Cache是cpu内部缓存、DRAM就是内存。GPU设计者将更多的晶体管用作执行单元,而不是像CPU那样用作复杂的控制单元和缓存。从实际来看,CPU芯片空间的5%是ALU,而GPU空间的40%是ALU。这也是导致GPU计算能力超强的原因。

【视频】运用GPU + NNA 实现设备端异构计算

7月3日下午,由电子创新网主办的“毛衣战下第一期的本土精品IC推介会”在深圳市南山区康佳研发大厦举办,Imagination公司应邀参加了本次活动并发表题为“运用GPU + NNA 实现设备端异构计算”的演讲,如果你错过现场,欢迎观看视频回放。

CPU与GPU是如何协同的,它们的工作流程是怎样的?

CPU需要很强的通用性来处理各种不同的数据类型,同时又要逻辑判断又会引入大量的分支跳转和中断的处理,这些都使得CPU的内部结构异常复杂。而GPU面对的则是类型高度统一的、相互无依赖的大规模数据和不需要被打断的纯净的计算环境。