GPU图像处理的基本流程
demi 在 周二, 12/18/2018 - 15:44 提交
现代GPU提供了顶点处理器和片段处理器两个可编程并行处理部件。在利用GPU执行图像处理等通用计算任务时,要做的主要工作是把待求解的任务映射到GPU支持的图形绘制流水线上。
通常的方法是把计算任务的输入数据用顶点的位置、颜色、法向量等属性或者纹理等图形绘制要素来表达,而相应的处理算法则被分解为一系列的执行步骤,并改写为GPU的顶点处理程序或片段处理程序,然后,调用3D API执行图形绘制操作,调用片段程序进行处理;最后,保存在帧缓存中的绘制结果就是算法的输出数据。
虽然数字图像处理算法多种多样,具体实现过程也很不相同,但是在利用GPU进行并行化处理时,有一些共性的关键技术问题需要解决,如:数据的加载,计算结果的反馈、保存等。
下面对这些共性的问题进行分析,并提出相应的解决思路。
1. 数据加载