边缘计算

漫谈边缘计算(一):边缘计算是大势所趋

前阵子边缘计算概念股被狂炒,众多真假专家纷纷提出对这一技术的理解和展望,股民们高涨的热情弄得我都不敢发声了。如今眼见那些边缘计算概念股冲高回落,我也终于可以阐述自己对边缘计算的观点了。想法比较多,也可能不系统,所以就分几个角度来说吧。

边缘计算的9个杀手级应用

边缘计算Edge Computing为在云端之外的平台运行应用程序提供了新的范例。边缘是用户及其设备与连接它们的网络相接触的地方。它是一个平台,但是没有应用的平台就像没有钉子的锤子。那么使边缘计算真正杀手级的应用是什么呢?

边缘计算在物联网(IoT)当中的运用

边缘计算是指在靠近物或数据源头的一侧,采用网络、计算、存储、应用核心能力为一体的开放平台,就近提供最近端服务。其应用程序在边缘侧发起,产生更快的网络服务响应,满足行业在实时业务、应用智能、安全与隐私保护等方面的基本需求。目前,许多科技企业已经在边缘计算上开始自己的布局。

未来,我们会看到越来越多的像智慧城市、智能工厂、智能制造、智能零售等一系列创新商业模式,它们在运用物联网技术的过程中,需要用到数据采集、处理、上传数据的边缘端计算设备和网关设备。这些设备或者是相应的解决方案,配合分布式数据库和分布式的数据处理,就构成一个完整的边缘计算体系。但这个体系不是独立存在的,它会跟云计算产生非常多的数据和应用互动。

边缘计算简单架构图

提到边缘计算,我们会联想到秒杀时候,使用CDN进行负载分流;可能也会联想到数据中心和分布式服务器;或者想到数据中心和设备采集网关;或者想到华为AI神经网络芯片、离线地图,离线语音识别;或者自动驾驶,电动汽车等等……

这边不深入考究边缘计算的概念,具体可以查看维基百科或百度百科

布局边缘计算企业需要提前考虑的几个问题

在物联网应用中,数据处理、分析和存储越来越多地发生在网络边缘侧,接近用户和设备需要访问信息的地方。所以,越来越多的企业将边缘计算当成了重要的发展方向。市场研究机构Grand View Research最近的一份报告预测,到2025年,全球边缘计算市场的规模将达到32.4亿美元,在预测期间,边缘计算的复合年增长率(CAGR)将达到41%。

边缘计算急需解决的难题

目前边缘计算已经得到了各行各业的广泛重视,并且在很多应用场景下开花结果。根据边缘计算领域特定的特点,本文认为6个方向是未来几年迫切需要解决的问题:编程模型、软硬件选型、基准程序与标准、动态调度、与垂直行业的紧密结合以及边缘节点的落地。

猪年,听说边缘计算与物联网要搞事情?

边缘计算能就近提供智能互联服务,满足行业在数字化变革过程中的关键需求。在物联网时代,不断增长的数据催生了对边缘计算的需求,据IDC预测,未来超过50%的数据需要在网络边缘侧分析、处理和储存。其巨大的市场空间也被玩家们看在眼里,2019边缘计算还将如何更好地推动物联网技术发展?这里列出了7个有关边缘计算和物联网的预测。

1、IIoT分析和机器学习(ML)公司会重点衡量它们在计算方面的交付能力。

随着越来越多的IoT项目采用以云为中心的解决方案,人工智能(AI)和IoT下一步要解决的问题是如何使用较少的资源,将算法带到边缘侧。据Gartner称,在未来四年内75%的企业生成的数据将在边缘处理(相对于云计算),而今天只有不到10%公司会这样做。数据的大量增加,更高的保真度分析,更低的延迟要求,安全问题和巨大的成本优势这些因素都催生了边缘计算的兴起。

虽然云是存储数据和训练机器学习模型的好地方,但它不能提供高保真的实时流数据分析。相反,边缘技术可对所有的原始数据提供高可靠性地分析,并能检测各种异常,最重要的是能做出实时反应。

2019年物联网技术将与人工智能融为一体

物联网(IoT)是IT基础设施的下一个发展阶段,将是能够处理数百万台甚至数十亿物联网设备的承载大部分数据负载的边缘平台。

但是,这种规模和范围的数据生态系统不会一蹴而就。当人们进入2019年,物联网将在边缘计算方面如何发展?在未来一年将有什么样的发展?

虽然物联网如今开始产生大量数据,但目前的数据量在未来十年发展中可能微不足道。事实上,人们所看到和触摸的每件事物,甚至是自己身体的一部分,在不久的将来会生成连续的数据流,以处理和存储边缘上的元素和集中式数据设施。而在那里,它将被解析、分析、组合,或以其他方式操纵,而在理论上将让公众受益于物联网。

物联网的发展

根据Zebra科技公司的调查,在过去一年中,企业对于物联网基础设施的平均投资为460万美元,比2017年增加了4%。大约84%的企业希望在2021年完成物联网的部署,尽管这可能用语不当,因为物联网不可能完全发展成熟,可能永远也不会,就像现在的数据中心基础设施还在不断发展一样。最可能的情况是,物联网将在未来两年内达到足够成熟的发展阶段,开始对商业模式做出重大贡献。

深度解析AIoT背后的发展逻辑

AIoT领域中人机交互的市场机会

自2017年开始,“AIoT”一词便开始频频刷屏,成为物联网的行业热词。“AIoT”即“AI+IoT”,指的是人工智能技术与物联网在实际应用中的落地融合。当前,已经有越来越多的人将AI与IoT结合到一起来看,AIoT作为各大传统行业智能化升级的最佳通道,已经成为物联网发展的必然趋势。

在基于IoT技术的市场里,与人发生联系的场景(如智能家居、自动驾驶、智慧医疗、智慧办公)正在变得越来越多。而只要是与人发生联系的地方,势必都会涉及人机交互的需求。人机交互是指人与计算机之间使用某种对话语言,以一定的交互方式,为完成确定任务的人与计算换机之间的信息交互过程。人机交互的范围很广,小到电灯开关,大到飞机上的仪表板或是发电厂的控制室等等。而随着智能终端设备的爆发,用户对于人与机器间的交互方式也提出了全新要求,使得AIoT人机交互市场被逐渐激发起来。

AIoT发展路径

多云和边缘计算存储的10个关键问题

将边缘和云计算与数据存储相结合充满了复杂性。幸运的是,有一些步骤可以帮助避免存储管理灾难。

管理企业存储可能是一个复杂且资源密集的过程。更具挑战性的是采用多云环境使复杂性增加了10倍。如果将边缘计算存储添加到其组合中,其管理可能会变成IT团队的噩梦,分布在多个平台和地理位置的数据将从四面八方涌入。

在深入探讨多云和边缘存储争议之前,首席信息官和其他IT决策者应该询问自己一系列重要问题。由于数据管理是存储的核心,因此数据收集、传输和保留只是需要考虑的多方面事项的一部分。

1. 数据将在何处生成和收集?

在多云/边缘计算存储环境中,数据可以由用户、应用程序或设备生成,并且源自台式机、笔记本电脑、智能手机、物联网监视器或其他系统。在某些情况下,数据在其生成位置附近收集,并通常会在其他位置发送。例如,销售代表可能使用移动应用程序向云计算服务上托管的Web应用程序提交订单,并收集和存储数据。将这些数据与布满物联网传感器的制造工厂的数据相比较,这些传感器将数据发送到附近的边缘计算系统,以便实时临时存储和分析。