机器学习

机器学习(Machine Learning,简称ML)是一种人工智能(AI)的分支,致力于研究让计算机系统能够从数据中学习并自动改进性能的算法和技术。机器学习使计算机系统能够从经验中学习,而不需要明确地进行编程。

人工智能和机器学习是影响融入移动应用开发的?

近年以来,计算机技术的发展越来越快,人类的生活开创了一个新的时代—开发强大的计算机系统,通过使用适当的设备,将其移动应用程序实施到全球所有垂直领域,无论是医学,教育,还是商业等等。

深度学习和传统机器学习的差别

是否需要人工构造特征,这应该是深度学习和传统机器学习的最明显的差异。feature engining是传统机器学习中的一个重要组成部分,sift,hog,wavelet等都是解决如何描述数据的问题。深度学习兴起后,feature engining的研究几乎停滞,而end-to-end成为一个新兴的研究方向。

机器学习中的方差、偏差和噪声

机器学习算法一般都会有训练和测试的过程,而且算法在不同训练集上学得的模型,测试的结果也很可能不同。一般来说,算法的方差衡量了训练集的变动导致的模型性能的变化,即多次训练的模型之间的性能差异性。偏差则是度量算法的期望输出与真实标记的区别,表达了学习算法对数据的拟合能力。而噪声则表示数据的真实标记与数据在数据集上标记的区别,表明算法在当前任务上能达到的测试误差的下界。

民主化与自动化:降低机器学习门槛的六大工具

过去,机器学习这个名词的头上曾经笼着科学的光环,只有少数高薪数据科学家才懂得如何用数据“喂养”复杂的算法,得出有用的分析结果。但如今随着自动化工具的快速发展,数据的采集、结构化和分析已经变得更加容易,机器学习的使用门槛已经大幅降低,即使那些不懂编程的业务人员,只要能提出正确的问题,同样也能用机器学习工具得到想要的结果。

Xgboost有哪些优点?

xgboost中的基学习器除了可以是CART(gbtree)也可以是线性分类器(gblinear)。xgboost主要优点:xgboost不仅使用到了一阶导数,还使用二阶导数,损失更精确,还可以自定义损失;XGBoost的并行优化,XGBoost的并行是在特征粒度上的​​​​​​​;考虑了训练数据为稀疏值的情况,可以为缺失值或者指定的值指定分支的默认方向,这能大大提升算法的效率......