6个你必须知道的机器学习的革命性的教训
demi 在 周四, 12/12/2019 - 09:14 提交
机器学习是未来,因为它将广泛应用于计算机和其他领域。尽管如此,开发有效的机器学习应用需要大量的“黑魔法”,这在手册中很难找到。
机器学习(Machine Learning,简称ML)是一种人工智能(AI)的分支,致力于研究让计算机系统能够从数据中学习并自动改进性能的算法和技术。机器学习使计算机系统能够从经验中学习,而不需要明确地进行编程。
机器学习是未来,因为它将广泛应用于计算机和其他领域。尽管如此,开发有效的机器学习应用需要大量的“黑魔法”,这在手册中很难找到。
错误率为分类错误的样本数占样本总数的比例,相应的精度=1-错误率,模型的实际预测输出与样本的真实输出之间的差异称为“误差”,模型在训练集上的误差称为“训练误差”,在新样本上的误差称为“泛化误差”。
说到正则化大家应该都不陌生,这个在机器学习和深度学习中都是非常常见的,常用的正则化有L1正则化和L2正则化。提到正则化大家就会想到是它会将权重添加到损失函数计算中来降低模型过拟合的程度。了解更多一点的同学还会说,L1正则化会让模型的权重参数稀疏化(部分权重的值为0),L2正则化会让模型的权重有趋于0的偏好。
常见的生成式模型有:线性判别式分析 (Linear Discriminant Analysis)、朴素贝叶斯 (Native Bayesian)、K近邻 (KNN)、混合高斯模型 (GaussianMixture Model)、隐马尔科夫模型 (HiddenMarkov Model)、贝叶斯网络 (Bayesian Networks)......
深度学习和机器学习已经变得无处不在,那它们之间到底有什么区别呢?本文我们为大家总结了深度学习VS机器学习的六大本质区别。
人们曾经认为眼睛是一个“闇哑的”传感器,通过视觉神经将数据发送到大脑,大脑包含了所有的视觉“处理”能力。近年来,科学家们一直在探究眼睛内视网膜神经元的复杂结构和线路。正如对大脑的研究已经为现代人工智能(AI)做出了巨大的贡献一样,关于视觉系统的这些发现也提出了一个有趣的框架,可以指导当今高度专业化、分布式和互连的数据中心中类似的复杂处理任务的未来发展。
学习支持向量机算法,其实对于所有的机器学习算法来讲,首先要了解它的物理含义,也就是它要解决的问题是什么,然后根据这个问题进行一步步的学习,最后得出最终的结论。
支持向量机(SVM,Support Vector Machine)在2012年前还是很牛逼的,但是在12年之后神经网络更牛逼些,但是由于应用场景以及应用算法的不同,我们还是很有必要了解SVM的,而且在面试的过程中SVM一般都会问到。支持向量机是一个非常经典且高效的分类模型。我们的目标:基于下述问题对SVM进行推导。
通过本篇文章可以对ML的常用算法有个常识性的认识,没有代码,没有复杂的理论推导,就是图解一下,知道这些算法是什么,它们是怎么应用的,例子主要是分类问题。
机器学习三种主要的学习方式:监督学习、无监督学习、强化学习。