机器学习的5个常见痛点及解决方法
demi 在 周四, 04/29/2021 - 16:29 提交
人们可能听说过很多机器学习的用例。例如参加会议、分享人工智能技术的LinkedIn帖子、以及博客文章都有所提及。虽然人们都知道机器学习这个术语,但在多大程度上理解了机器学习的含义?
机器学习(Machine Learning,简称ML)是一种人工智能(AI)的分支,致力于研究让计算机系统能够从数据中学习并自动改进性能的算法和技术。机器学习使计算机系统能够从经验中学习,而不需要明确地进行编程。

人们可能听说过很多机器学习的用例。例如参加会议、分享人工智能技术的LinkedIn帖子、以及博客文章都有所提及。虽然人们都知道机器学习这个术语,但在多大程度上理解了机器学习的含义?

得益于速度更快的WiFi和5G技术以及机器学习和人工智能的技术改进,很多企业迅速实施数字化转型,并获得更高的连通性。如今全球拥有300多亿台物联网设备,物联网技术正日益应用在人们的工作和生活中……

尽管现有的机器学习模型已经取得了巨大的进步,但遗憾的是,所有的模型不过是对数据的精确曲线拟合。从这一点而言,现有的模型只是在上一代的基础上提升了性能,在基本的思想方面没有任何进步。那么,怎样才能推动AI社区解决这一问题呢?

对那些想了解机器学习的人做一个简单的介绍。不涉及高级原理,只用简单的语言来谈现实世界的问题和实际的解决方案。不管你是一名程序员还是管理者,都能看懂。

本资源收录了机器学习课程用到的相关术语,涉及机器学习基础、机器学习理论、DNN、CNN、RNN、GAN等。

神经网络以其强大的非线性表达能力而获得人们的青睐,但是将网络层数加深的过程中却遇到了很多困难,随着批量正则化,ReLU 系列激活函数等手段的引入,在多层反向传播过程中产生的梯度消失和梯度爆炸问题也得到了很大程度的解决。

机器通过分析大量数据来进行学习。比如说,不需要通过编程来识别猫或人脸,它们可以通过使用图片来进行训练,从而归纳和识别特定的目标。

电气和电子工程师协会(IEEE)的研究员兼数据存储分析公司Coughlin Associates的总裁Tom Coughlin认为,所有的数据中心都可以利用机器学习等人工智能方法来更好地管理内部资源,并预测即将推出的硬件和数据需求。他指出:“人工智能正在成为最重要的(数据中心)应用程序之一。”

如果你刚接触大数据,你可能会觉得这个领域很难以理解,无从下手。不过,你可以从下面这份包含了 25 个大数据术语的清单入手~

大数据从其核心来讲,它描述了结构化或非结构化数据如何结合社交媒体分析,物联网的数据和其他外部来源,来讲述一个”更大的故事”。该故事可能是一个组织运营的宏观描述,或者是无法用传统的分析方法捕获的大局观。从情报收集的角度来看,其所涉及的数据的大小是微不足道的。