特征工程技术与方法
demi 在 周三, 09/02/2020 - 15:47 提交
在之前学习机器学习技术中,很少关注特征工程(Feature Engineering),然而,单纯学习机器学习的算法流程,可能仍然不会使用这些算法,尤其是应用到实际问题的时候,常常不知道怎么提取特征来建模。 特征是机器学习系统的原材料,对最终模型的影响是毋庸置疑的。
机器学习(Machine Learning,简称ML)是一种人工智能(AI)的分支,致力于研究让计算机系统能够从数据中学习并自动改进性能的算法和技术。机器学习使计算机系统能够从经验中学习,而不需要明确地进行编程。
在之前学习机器学习技术中,很少关注特征工程(Feature Engineering),然而,单纯学习机器学习的算法流程,可能仍然不会使用这些算法,尤其是应用到实际问题的时候,常常不知道怎么提取特征来建模。 特征是机器学习系统的原材料,对最终模型的影响是毋庸置疑的。
特征选择(排序)对于数据科学家、机器学习从业者来说非常重要。好的特征选择能够提升模型的性能,更能帮助我们理解数据的特点、底层结构,这对进一步改善模型、算法都有着重要作用。
常见的机器学习&数据挖掘知识点——SSE(Sum of Squared Error, 平方误差和);
SAE(Sum of Absolute Error, 绝对误差和);
SRE(Sum of Relative Error, 相对误差和);
MSE(Mean Squared Error, 均方误差)......
机器学习近几年大热,大家都想要了解,但机器学习已经形成一套枝叶繁茂的知识体系,而且往往建筑在复杂的数学基础之上,又容易让人无从下手。初学者最常问的,不是某个具体的重点难点知识,反而是机器学习究竟该怎样学。
本文概述了计算机视觉、自然语言处理和机器学习中常用的优化器。此外,你会找到一个基于三个问题的指导方针,以帮助你的下一个机器学习项目选择正确的优化器。
机器学习涉及到机器学习算法和模型的使用。对于初学者来说,这很容易让人混淆,因为“机器学习算法”经常与“机器学习模型”交替使用。这两个到底是一样的东西呢,还是不一样的东西?作为开发人员,你对排序算法、搜索算法等“算法”的直觉,将有助于你厘清这个困惑。在本文中,我将阐述机器学习“算法”和“模型”之间的区别。
问问题是学习的最好方法之一。但有时你不知道从哪里开始,或者该问什么 —— 尤其是在你还比较熟悉的异常检测之类的话题上。在这种情况下,最好倾听别人的问题,让他们的思路来指导你的学习。
由谷歌Brain的研究人员创建的TensorFlow是机器学习和数据科学领域最大的开源数据库之一。它是一个端到端的平台,适用于初学者和有经验的数据科学家。TensorFlow库包括工具、预训练模型、机器学习指南,以及开放数据集的语料库。为了帮助你找到所需的训练数据,本文将简要介绍一些用于机器学习的最大的TensorFlow数据集。我们已经将下面的列表分为图像、视频、音频和文本数据集。
为什么我需要一个清单?因为在一个项目中,你需要处理许多元素(争吵、准备、问题、模型、调优等等),所以很容易失去对事情的了解。这个清单可以引导你完成接下来的步骤,并促使你检查每一个任务是否执行成功。
很多时候,我们在学习过程中迷失了方向,从而失去了继续学习的动力。许多概念需要系统化。但是今天,我想为大家介绍机器学习的所有概念,这些概念将有助于你更快地了解这个领域。这篇文章将适合那些刚刚入门并且已经在实践中开始使用机器学习的人。