常见的机器学习&数据挖掘知识点
demi 在 周三, 08/26/2020 - 11:55 提交
常见的机器学习&数据挖掘知识点——SSE(Sum of Squared Error, 平方误差和);
SAE(Sum of Absolute Error, 绝对误差和);
SRE(Sum of Relative Error, 相对误差和);
MSE(Mean Squared Error, 均方误差)......
机器学习(Machine Learning,简称ML)是一种人工智能(AI)的分支,致力于研究让计算机系统能够从数据中学习并自动改进性能的算法和技术。机器学习使计算机系统能够从经验中学习,而不需要明确地进行编程。
常见的机器学习&数据挖掘知识点——SSE(Sum of Squared Error, 平方误差和);
SAE(Sum of Absolute Error, 绝对误差和);
SRE(Sum of Relative Error, 相对误差和);
MSE(Mean Squared Error, 均方误差)......
机器学习近几年大热,大家都想要了解,但机器学习已经形成一套枝叶繁茂的知识体系,而且往往建筑在复杂的数学基础之上,又容易让人无从下手。初学者最常问的,不是某个具体的重点难点知识,反而是机器学习究竟该怎样学。
本文概述了计算机视觉、自然语言处理和机器学习中常用的优化器。此外,你会找到一个基于三个问题的指导方针,以帮助你的下一个机器学习项目选择正确的优化器。
机器学习涉及到机器学习算法和模型的使用。对于初学者来说,这很容易让人混淆,因为“机器学习算法”经常与“机器学习模型”交替使用。这两个到底是一样的东西呢,还是不一样的东西?作为开发人员,你对排序算法、搜索算法等“算法”的直觉,将有助于你厘清这个困惑。在本文中,我将阐述机器学习“算法”和“模型”之间的区别。
问问题是学习的最好方法之一。但有时你不知道从哪里开始,或者该问什么 —— 尤其是在你还比较熟悉的异常检测之类的话题上。在这种情况下,最好倾听别人的问题,让他们的思路来指导你的学习。
由谷歌Brain的研究人员创建的TensorFlow是机器学习和数据科学领域最大的开源数据库之一。它是一个端到端的平台,适用于初学者和有经验的数据科学家。TensorFlow库包括工具、预训练模型、机器学习指南,以及开放数据集的语料库。为了帮助你找到所需的训练数据,本文将简要介绍一些用于机器学习的最大的TensorFlow数据集。我们已经将下面的列表分为图像、视频、音频和文本数据集。
为什么我需要一个清单?因为在一个项目中,你需要处理许多元素(争吵、准备、问题、模型、调优等等),所以很容易失去对事情的了解。这个清单可以引导你完成接下来的步骤,并促使你检查每一个任务是否执行成功。
很多时候,我们在学习过程中迷失了方向,从而失去了继续学习的动力。许多概念需要系统化。但是今天,我想为大家介绍机器学习的所有概念,这些概念将有助于你更快地了解这个领域。这篇文章将适合那些刚刚入门并且已经在实践中开始使用机器学习的人。
机器学习是通过算法使得机器从大量历史数据中学习规律,从而对新样本做分类或者预测。一个机器学习过程主要分为三个阶段:(1)训练阶段,训练阶段的主要工作是根据训练数据建立模型。(2)测试阶段,测试阶段的主要工作是利用验证集对模型评估与选择。(3)工作阶段,工作阶段的主要工作是利用建立好的模型对新的数据进行预测与分类。
机器学习问题之中,通常需要建立模型来解决具体问题,但对于模型的好坏,也就是模型的泛化能力,如何进行评估呢?很简单,我们可以定一些评价指标,来度量模型的优劣。比如准确率、精确率、召回率、F1值、ROC、AUC等指标,但是你清楚这些指标的具体含义吗?一起来看看吧。