demi的博客

K-Means聚类算法原理

K-Means算法是无监督的聚类算法,它实现起来比较简单,聚类效果也不错,因此应用很广泛。K-Means算法有大量的变体,本文就从最传统的K-Means算法讲起,在其基础上讲述K-Means的优化变体方法。包括初始化优化K-Means++, 距离计算优化elkan K-Means算法和大数据情况下的优化Mini Batch K-Means算法。

物联网网关的概念及三大关键设计因素

网关是一种充当转换重任的计算机系统或设备。在使用不同的通信协议、数据格式或语言,甚至体系结构完全不同的两种系统之间,网关是一个翻译器。与网桥只是简单地传达信息不同,网关对收到的信息要重新打包,以适应目的系统的需求。同时,网关也可以提供过滤和安全功能。

深度学习中梯度下降的两个阶段

事实上,在神经网络中,我们几乎总是选择我们的模型作为运行随机梯度下降的输出。对线性模型来说,我们分析SGD如何作为一个隐式调节器。对于线性模型,SGD总是收敛到一个小规范的解决方案。因此,算法本身隐含地规范了解决方案。

分享:LeNet-5 卷积神经网络结构图

LeNet-5是Yann LeCun在1998年设计的用于手写数字识别的卷积神经网络,当年美国大多数银行就是用它来识别支票上面的手写数字的,它是早期卷积神经网络中最有代表性的实验系统之一。可以说,LeNet-5就相当于编程语言入门中的“Hello world!”。

图像处理之灰度变换

对于数字图像处理而言,一般包含着空间域处理和变换域处理两种形式。空间域处理方法主要是直接以图像中的像素操作为基础,它主要分为灰度变换和空间滤波两类。灰度变换是在图像的单个像素上操作,主要以对比度和阈值处理为目的。