五大核心构成的AIoT,正在遭遇三大挑战,两条突破口外还有什么?
demi 在 周一, 05/27/2019 - 14:00 提交
随着IoT与AI逐步走向融合,AIoT正将以全新的方式改变人们的生活。
随着IoT与AI逐步走向融合,AIoT正将以全新的方式改变人们的生活。
一个三维场景的画面的好坏,百分之四十取决于模型,百分之六十取决于贴图,可见贴图在画面中所占的重要性。本文将列举一系列贴图,并且初步阐述其概念,理解原理的基础上制作贴图,也就顺手多了。
目标识别的评价指标主要有ROC曲线,missrate、FPPI、FPPW等。单图像跟踪的评价指标主要有两个,一个是pixel error,一般是算中心距离,另一个是overlap rate,区域重叠率,用重叠区域除以两个矩形所占的总面积Aoverlap /(A1+A2-Aoverlap),常常用pixel error绘制帧误差曲线,用重叠率绘制误差曲线。
机器视觉主要解决四大问题:定位、测量、检测、识别。在机器视觉中打光和光源影响着系统的稳定性,比如在测量应用中,光照发生10%-20%的变化,就可能导致图像边缘偏移1-2个像素,这些问题在算法层面是不容易解决的。所以了解光源和打光非常重要。
常用的图像特征有:颜色特征(描述了图像或图像区域所对应的景物的表面性质)、纹理特征(描述了图像或图像区域所对应景物的表面性质)、形状特征(各种基于形状特征的检索方法都可以比较有效地利用图像中感兴趣的目标来进行检索)、空间关系特征(是指图像中分割出来的多个目标之间的相互的空间位置或相对方向关系)。
当今时代,网络世界处处充满了危机,对于网络用户来说,能够对各种类型的恶意软件进行了解,也许有助于在网上冲浪的过程中保全自身。
Unity3D光照系统中,一共有四种选项,分别为Directional Light(平行光),Point Light(点光源),Spotlight(聚光灯),Area Light(区域光)。
要谈3D视觉应用方案,就必须先弄清楚光学测量分类以及其原理。光学测量分为主动测距法和被动测距法。主动测距方法的基本思想是利用特定的、人为控制光源和声源对物体目标进行照射,根据物体表面的反射特性及光学、声学特性来获取目标的三维信息。其特点是具有较高的测距精度、抗干扰能力和实时性,具有代表性的主动测距方法有结构光法、飞行时间法、和三角测距法。
Gartner最近的一项调查显示,很多公司才刚刚开始机器学习之旅,而37%的组织已经实施了人工智能。如果你已经准备好接受机器学习,你可能先要评估十个问题或评估人工智能、机器学习和深度学习的完整指南,然后才能对机器学习进行概念验证。
图像配准方法主要分为三类:一种是灰度方法信息方法,另一种是基于特征的方法,可细分为特征点、直线段、边缘轮廓、特征结构以及矩不变统计特征等,还有一种就是基于变换域的方法,如相位相关、Walsh Transform等方法。傅里叶-梅林变换就是一种变换域的方法。