影响大数据、机器学习和人工智能未来发展的8个因素
demi 在 周二, 05/14/2019 - 10:26 提交
人工智能和机器学习以及不断增加的数据量正在改变当前的商业和社会格局。这些领域中出现了许多需要CIO注意的主题和问题。
人工智能和机器学习以及不断增加的数据量正在改变当前的商业和社会格局。这些领域中出现了许多需要CIO注意的主题和问题。
当显示器的分辨率或显示屏的PPI(每英寸的像素数)足够大时,人眼将无法看清具体的像素点,但相邻像素之间的色彩差异也会产生明显的错落感,高分辨率/PPI由于像素变得非常细腻,可以同比缩小锯齿,但仍不能完全消除锯齿。
当“自动驾驶汽车”、“无人驾驶汽车”两个词频频被大众所提及,有关自动驾驶等方面的消息便一直成为一种神奇的力量,引导着大家对未来交通抱有无尽的幻想和各种猜测。
觉得自己了解恶意软件?恐怕你的恶意软件认知需要更新一下了。如何查找和清除恶意软件也有一些基本的建议可供参考。
在隐马尔科夫模型HMM(一)HMM模型中,我们讲到了HMM模型的基础知识和HMM的三个基本问题,本篇我们就关注于HMM第一个基本问题的解决方法,即已知模型和观测序列,求观测序列出现的概率。
前向渲染是通过深度缓冲和颜色缓冲来实现的,使用深度缓冲来决定一个片元是否可见,如果可见,则更新颜色缓冲区中的颜色值。如果场景中有n个物体受m个光源的影响,那么要渲染整个场景,则需要n*m个pass,如果m较多的话,这个开销还是比较大的。
物联网这一术语通常指的是网络连接和计算能力扩展到通常不被认为是计算机的设备、传感器和日常用品的情况,允许这些东西(设备)在最少的人工干预下生成、交换和消费数据。不过,并没有单一的、普遍的定义。
GPU图形处理,可以大致分成 5 个步骤:第一步,vertex shader。第二步,primitive processing。第三步,rasterisation。第四步,fragment shader。最后一步,testing and blending。
迁移学习是深度神经网络最吸引人的特性之一。在这篇文章中,我们将首先看看什么是迁移学习,什么时候可行,什么时候不可行,为什么在某些情况下行不通,最后总结一些关于迁移学习的最佳实践的建议。
在进行任何AI/ML部署之前,组织需要将其数据科学的研究工作与项目管理的最佳实践相结合。在2019年1月,Gartner发布了一项调查,37%的受访者表示他们已经在某种程度上使用了人工智能(AI),但54%的受访者表示,他们所在组织的技能短缺阻碍了他们积极推进使用人工智能的进程。