CNN

如何理解CNN中的池化?

我们之所以使用卷积后的特征,是因为图像具有“静态型”的属性,也就意味着在一个图像区域的特征极有可能在另一个区域同样适用。所以,当我们描述一个大的图像的时候就可以对不同位置的特征进行聚合统计这种统计方式不仅可以降低纬度,还不容易过拟合。

CNN常见问题总结

CNN网络是一种用来处理局部和整体相关性的计算网络结构,被应用在图像识别(CV)、自然语言处理(NLP)甚至是语音识别领域,因为图像数据具有显著的局部与整体关系,其在图像识别领域的应用获得了巨大的成功。