CNN

如何利用CNN实现图像识别的任务?

输入层读入经过规则化(统一大小)的图像,每一层的每个神经元将前一层的一组小的局部近邻的单元作为输入,也就是局部感受野和权值共享,神经元抽取一些基本的视觉特征,比如边缘、角点等,这些特征之后会被更高层的神经元所使用。

思考卷积神经网络(CNN)中各种意义

简单来说,CNN的目的是以一定的模型对事物进行特征提取,而后根据特征对该事物进行分类、识别、预测或决策等。在这个过程里,最重要的步骤在于特征提取,即如何提取到能最大程度区分事物的特征。如果提取的特征无法将不同的事物进行划分,那么该特征提取步骤将毫无意义。而实现这个伟大的模型的,是对CNN进行迭代训练。

关于卷积神经网络体系设计的理论实现

卷积神经网络,简称CNN,常用于视觉图像分析的深度学习的人工神经网络。形象地来说,这些网络结构就是由生物的神经元抽象拟合而成的。正如,每个生物神经元可以相互通信一般,CNN根据输入产生类似的通信输出。

形象的解释:DBN、GAN、RNN、LSTM、CNN

深度信念网络(Deep Belief Nets),是一种概率生成模型,能够建立输入数据和输出类别的联合概率分布。深度信念网络通过采用逐层训练的方式,解决了深层次神经网络的优化问题,通过逐层训练为整个网络赋予了较好的初始权值,使得网络只要经过微调就可以达到最优解。