《常用算法之智能计算 (二) 》:神经网络计算
demi 在 周二, 02/12/2019 - 09:24 提交
神经网络计算(Neural Network Computing NNC)是通过对人脑的基本单元——神经元的模拟,经过输入层、隐层、输出层等层次结构,对数据进行调整、评估和分析计算,得到的一类具有学习、联想、记忆和模式识别等功能的智能算法。要想比较深入的理解神经网络计算,就必须对神经网络系统有一定的理解,本文对其进行一些简单介绍。
算法是一组用于解决特定问题或执行特定任务的有序步骤。在计算机科学中,算法是用于完成计算任务的一系列定义明确的指令。算法可以用于处理数据、执行计算、解决问题或执行其他与计算有关的任务。
机器学习算法是机器学习领域中用于从数据中学习模式并做出预测或决策的数学模型或规则。这些算法可以分为多个主要类别,取决于学习任务的类型和目标。
神经网络计算(Neural Network Computing NNC)是通过对人脑的基本单元——神经元的模拟,经过输入层、隐层、输出层等层次结构,对数据进行调整、评估和分析计算,得到的一类具有学习、联想、记忆和模式识别等功能的智能算法。要想比较深入的理解神经网络计算,就必须对神经网络系统有一定的理解,本文对其进行一些简单介绍。
目标跟踪是计算机视觉领域的一个重要分支,是模式识别,图像处理,计算机视觉,机器学习等学科的交叉研究,有着广泛的应用,如视频监控,虚拟现实,人机交互,图像理解,无人驾驶等。
作为一个机器学习方面的小白,在闵老师课上学的两个聚类算法,即经典的K-means聚类和基于随机游走的聚类算法,是我学习到的头两个与机器学习相关的算法。算法课上,闵老师先讲了简单但是经典的K-means聚类算法,让我们对聚类算法有了一个初步的理解,紧接着又花了大量的时间剖析了基于随机游走的聚类算法。五周十二次的课程,我学到的不只是算法本身,下面将从几个方面来总结我对本课程的收获。
机器学习横跨计算机科学、工程技术和统计学等多个科学。人们很难直接从原始数据本身获得所需信息,机器学习可以把无序的数据转换成有用的信息;移动计算和传感器产生的海量数据意味着未来将面临越来越多的数据,如何从中抽取到有价值的信息很重要,机器学习可以帮助我们从中抽取有用的信息。
临时研究了下机器视觉两个基本算法的算法原理 ,可能有理解错误的地方,希望发现了告诉我一下
主要是了解思想,就不写具体的计算公式之类的了
<(一) ICP算法(Iterative Closest Point迭代最近点)/strong>
ICP(Iterative Closest Point迭代最近点)算法是一种点集对点集配准方法,如下图1
如下图,假设PR(红色块)和RB(蓝色块)是两个点集,该算法就是计算怎么把PB平移旋转,使PB和PR尽量重叠,建立模型的
摘要: 本文对机器学习的一些基本概念给出了简要的介绍,并对不同任务中使用不同类型的机器学习算法给出一点建议。
在从事数据科学工作的时候,经常会遇到为具体问题选择最合适算法的问题。虽然有很多有关机器学习算法的文章详细介绍了相关的算法,但要做出最合适的选择依然非常困难。
在这篇文章中,我将对一些基本概念给出简要的介绍,对不同任务中使用不同类型的机器学习算法给出一点建议。在文章的最后,我将对这些算法进行总结。
首先,你应该能区分以下四种机器学习任务:
• 监督学习
• 无监督学习
• 半监督学习
• 强化学习
监督学习
监督学习是从标记的训练数据中推断出某个功能。通过拟合标注的训练集,找到最优的模型参数来预测其他对象(测试集)上的未知标签。如果标签是一个实数,我们称之为回归。如果标签来自有限数量的值,这些值是无序的,那么称之为分类。
1. LDA
LDA是一种三层贝叶斯模型,三层分别为:文档层、主题层和词层。该模型基于如下假设:
1)整个文档集合中存在k个互相独立的主题;
2)每一个主题是词上的多项分布;
3)每一个文档由k个主题随机混合组成;
4)每一个文档是k个主题上的多项分布;
5)每一个文档的主题概率分布的先验分布是Dirichlet分布;
6)每一个主题中词的概率分布的先验分布是Dirichlet分布。
文档的生成过程如下:
1)对于文档集合M,从参数为β的Dirichlet分布中采样topic生成word的分布参数φ;
2)对于每个M中的文档m,从参数为α的Dirichlet分布中采样doc对topic的分布参数θ;
3)对于文档m中的第n个词语W_mn,先按照θ分布采样文档m的一个隐含的主题Z_m,再按照φ分布采样主题Z_m的一个词语W_mn。
在三维显示,空间可视化表达和图像处理中,插值处理是比较重要的一个部分。如何能找到快速、简单、有效的插值算法是目前研究者们津津乐道的问题。
以下几种是前人收集起来的比较常用的插值算法,仅供参考:
• Inverse Distance to a Power(反距离加权插值法)
• Kriging(克里金插值法)
• Minimum Curvature(最小曲率)
• Modified Shepard's Method(改进谢别德法)
• Natural Neighbor(自然邻点插值法)
• Nearest Neighbor(最近邻点插值法)
• Polynomial Regression(多元回归法)
• Radial Basis Function(径向基函数法)
• Triangulation with Linear Interpolation(线性插值三角网法)
• Moving Average(移动平均法)
• Local Polynomial(局部多项式法)
下面简单说明不同算法的特点。
AIoT领域中人机交互的市场机会
自2017年开始,“AIoT”一词便开始频频刷屏,成为物联网的行业热词。“AIoT”即“AI+IoT”,指的是人工智能技术与物联网在实际应用中的落地融合。当前,已经有越来越多的人将AI与IoT结合到一起来看,AIoT作为各大传统行业智能化升级的最佳通道,已经成为物联网发展的必然趋势。
在基于IoT技术的市场里,与人发生联系的场景(如智能家居、自动驾驶、智慧医疗、智慧办公)正在变得越来越多。而只要是与人发生联系的地方,势必都会涉及人机交互的需求。人机交互是指人与计算机之间使用某种对话语言,以一定的交互方式,为完成确定任务的人与计算换机之间的信息交互过程。人机交互的范围很广,小到电灯开关,大到飞机上的仪表板或是发电厂的控制室等等。而随着智能终端设备的爆发,用户对于人与机器间的交互方式也提出了全新要求,使得AIoT人机交互市场被逐渐激发起来。
AIoT发展路径