神经网络

神经网络是一种受到生物神经系统启发而设计的计算模型,用于机器学习和人工智能领域。神经网络由大量的人工神经元(模拟生物神经元)组成,这些神经元通过连接权重相互连接,形成网络结构。神经网络的目标是通过学习和调整权重来模拟和解决复杂的问题。

LSTM 为何如此有效?这五个秘密是你要知道的

长短期记忆网络(LSTM)不仅能够解决 RNN无法处理长距离的依赖的问题,还能够解决神经网络中常见的梯度爆炸或梯度消失等问题,在处理序列数据方面非常有效。有效背后的根本原因有哪些?本文结合简单的案例,带大家了解关于 LSTM 的五个秘密,也解释了 LSTM如此有效的关键所在。

简单理解LSTM神经网络

在传统神经网络中,模型不会关注上一时刻的处理会有什么信息可以用于下一时刻,每一次都只会关注当前时刻的处理。举个例子来说,我们想对一部影片中每一刻出现的事件进行分类,如果我们知道电影前面的事件信息,那么对当前时刻事件的分类就会非常容易。

权值衰减和L2正则化傻傻分不清楚?

神经网络是伟大的函数逼近器和特征提取器,但有时它们的权值变得过于特定化,导致过拟合。这就是正则化概念出现的地方,我们将讨论两种主要权重正则化技术之间的细微差别,它们经常被错误地认为是相同的。

1 个 AI 模型 = 5 辆汽车终身碳排量,AI 为何如此耗能?

根据最新的研究结果,训练一个普通的 AI 模型消耗的能源相当于五辆汽车一生排放的碳总量,而 BERT 模型的碳排放量约为 1400 磅二氧化碳,这相当于一个人来回坐飞机横穿美国。为何 AI 模型会如此费电,它们与传统的数据中心计算有何不同?

可以提高你的图像识别模型准确率的7个技巧

假定,你已经收集了一个数据集,建立了一个神经网络,并训练了您的模型。但是,尽管你投入了数小时(有时是数天)的工作来创建这个模型,它还是能得到50-70%的准确率。这肯定不是你所期望的。本文是一些提高模型性能指标的策略或技巧,可以大大提升你的准确率。