经验总结|深度学习性能速查表
demi 在 周三, 12/18/2019 - 09:31 提交
我从新入行和有经验的机器学习工程师中那里得到的最多的问题就是”我如何得到更高的准确率?“既然机器学习在商业领域最有价值的地方就是在于它的预测能力,那么从现有的系统中压榨更高的准确率是一个简单的获取更多价值的方法。本文会分4个不同的部分,每个部分介绍一些不同的策略。
深度学习是一种基于人工神经网络的机器学习方法,它通过多层神经网络对数据进行建模和学习,从而使计算机能够自动从数据中提取特征并进行预测。深度学习在图像处理、语音识别、自然语言处理等领域取得了显著的突破,特别是在大数据和强大计算能力的支持下,深度学习已成为解决复杂问题的主要技术。
我从新入行和有经验的机器学习工程师中那里得到的最多的问题就是”我如何得到更高的准确率?“既然机器学习在商业领域最有价值的地方就是在于它的预测能力,那么从现有的系统中压榨更高的准确率是一个简单的获取更多价值的方法。本文会分4个不同的部分,每个部分介绍一些不同的策略。
一年一度的校园招聘已经开始了,为了帮助参加校园招聘、社招的同学更好的准备面试,SIGAI整理出了一些常见的机器学习、深度学习面试题。理解它们,对你通过技术面试非常有帮助,当然,我们不能只限于会做这些题目,最终的目标是真正理解机器学习与深度学习的原理、应用。
深度学习中的双下降现象,可能大家也遇到过,但是没有深究,OpenAI这里给出了他们的解答。
现在深度学习模型开始走向应用,因此我们需要把深度学习网络和模型部署到一些硬件上,而现有一些模型的参数量由于过大,会导致在一些硬件上的运行速度很慢,所以我们需要对深度学习模型进行小型化处理。模型小型化旨在保证模型效果不会明显下降的情况下降低模型的参数量,从而提高模型的运算速度。
说到正则化大家应该都不陌生,这个在机器学习和深度学习中都是非常常见的,常用的正则化有L1正则化和L2正则化。提到正则化大家就会想到是它会将权重添加到损失函数计算中来降低模型过拟合的程度。了解更多一点的同学还会说,L1正则化会让模型的权重参数稀疏化(部分权重的值为0),L2正则化会让模型的权重有趋于0的偏好。
深度学习和机器学习已经变得无处不在,那它们之间到底有什么区别呢?本文我们为大家总结了深度学习VS机器学习的六大本质区别。
本文将探讨2019年对人工智能将意味着什么。在2019年,算法无处不在,但人工智能技术尚稚嫩,在数据云中的整合还很不成熟,它只是一个渠道。深度学习和机器人技术仍处于初期阶段。
在人工智能深度学习技术中,有一个很重要的概念就是卷积神经网络 CNN(Convolutional Neural Networks)。
现在深度学习有多么热门,我就不强调了,总之你能想象到的领域,在未来都可能应用到深度学习,非常值钱。更重要的是,“深度学习”算法包含精妙的思想,能够代表这个时代的精神。
一般而言,比较成功的神经网络需要大量的参数,许许多多的神经网路的参数都是数以百万计,而使得这些参数可以正确工作则需要大量的数据进行训练,而实际情况中数据并没有我们想象中的那么多。