深度学习的数学-神经单元、激活函数、Sigmoid
demi 在 周一, 02/24/2020 - 15:20 提交
阅读《深度学习的数学》书中第一部分提到了关于 神经元、神经单元、激活函数以及一个非常具有代表性的 Sigmoid 函数,本博客的目的既是对此做一个总结
深度学习是一种基于人工神经网络的机器学习方法,它通过多层神经网络对数据进行建模和学习,从而使计算机能够自动从数据中提取特征并进行预测。深度学习在图像处理、语音识别、自然语言处理等领域取得了显著的突破,特别是在大数据和强大计算能力的支持下,深度学习已成为解决复杂问题的主要技术。
阅读《深度学习的数学》书中第一部分提到了关于 神经元、神经单元、激活函数以及一个非常具有代表性的 Sigmoid 函数,本博客的目的既是对此做一个总结
深度学习常见专业名词:输入层;输出层;隐含层;卷积;池化;激活函数;Dropout......
当你辗转于各种论坛时,相信会经常看到这样的问题:深度学习是否会取代传统的计算机视觉?或者说,当深度学习看起来如此有效时,是否还有必要研究传统的计算机视觉技术?
我们经常见到介绍计算机视觉领域的深度学习新进展的文章,不过针对深度学习本身的研究经常告诉我们:深度学习并不是那个最终的解决方案,它有许多问题等待我们克服。
人类的视觉系统有非凡的能力,能够让我们从三维世界的二维投影中了解我们的三维世界。即使在具有多个移动对象的复杂环境中,人们也能够对对象的几何结构和深度顺序进行合理的解释。
边缘计算,将计算节点的精细网格放置于靠近终端设备的位置,是一种可行的方法来满足于在边缘设备上深度学习的高计算和低延迟要求,并在隐私、带宽效率和可伸缩性方面提供额外的好处。
卷积神经网络顾名思义,是一种使用了卷积运算的神经网络。随着深度学习技术的发展,卷积神经网络的复杂度不断提升,逐渐发展出针对不同问题而设计的卷积(convolution)运算。
人工智能,或者说计算机视觉的一个最终目标在于构建一个真正可适用于真实世界复杂环境的系统。而就目前所应用的机器学习系统而言,大部分采用了有监督的学习方法,也必然导致了需要广泛收集图像样本,并进行对应的图像标注的工作。而人力时有穷尽,高质量的样本集图片又是构建一个优秀的机器学习系统的关键因素。
深度学习中用到的几个微积分知识:导数、微分、偏导数。
这12个问题是当前面试中最热门的问题,既是非常基础的问题,也能看出面试者的水平,具有区分度。无论是面试官还是求职者都可以看看。