深度学习

深度学习是一种基于人工神经网络的机器学习方法,它通过多层神经网络对数据进行建模和学习,从而使计算机能够自动从数据中提取特征并进行预测。深度学习在图像处理、语音识别、自然语言处理等领域取得了显著的突破,特别是在大数据和强大计算能力的支持下,深度学习已成为解决复杂问题的主要技术。

深度学习 - 对过拟合和欠拟合问题的处理

我们以图像形式说明下欠拟合、正常拟合、过拟合的场景,左图为欠拟合,此时算法学习到的数据规律较弱,有较差的预测效果,中图为正常拟合的形态,模型能够兼顾预测效果和泛化能力,右图是过拟合的情形,此时模型对训练集有较好的预测效果,但是因为其过度拟合于训练数据,所以对未见过的数据集有较差的预测效果,也就是我们通常说的低泛化能力。

深度学习已成功应用于这三大领域

在本章中,我们将介绍如何使用深度学习来解决计算机视觉、语音识别、自然语言处理以及其他商业领域中的应用。首先我们将讨论在许多最重要的AI 应用中所需的大规模神经网络的实现。接着,我们将回顾深度学习已经成功应用的几个特定领域。

七步理解深度学习

深度学习是机器学习的一个分支,拥有很多的相似性,但是却也不同,深度神经网络结构在自然语言处理、计算机视觉、生物信息学和其他领域解决了各种各样的问题。深度学习经历了一场巨大的最近研究的重现,并且在很多领域中已经展现出最先进的成果。

对深度学习的认知——深度模型可以解决什么问题?

在跟深度模型打交道的过程中,使用 DNN 解决了一些分类的问题。目前 DNN 好像是非常流行的一种学习方法。但是,如果要问我什么是 DNN,DNN 到底为什么这么受欢迎,它到底有哪些优势?以下是我个人的一些看法和回答。

深度学习 - 对神经网络本质的理解(层结构和行为角度)

神经网络做分类等问题的核心原理是使用升维/降维、 放大/缩小、旋转、平移、弯曲这5大类操作完成扭曲变换,最终能在扭曲后的空间找到轻松找到一个超平面分割空间。

深度学习之生成对抗网络(Gan)

生成对抗网络(GAN,Generative Adversatial Networks)是一种深度学习模型,近年来无监督学习上最具前景的方法之一。 模型主要通用框架有(至少)两个模块:生成模型和判别模型的互相博弈学习产生的相当好的输出。 原始GAN理论中,并不要求G和D都是神经网络,但使用中一般均使用深度神经网络作为G和D。

深度学习 - 解决局部最优点问题的方案

一般的梯度下降方法寻找的是loss function的局部极小值,而我们想要全局最小值。如下误差曲面图所示,我们希望loss值可以降低到右侧深蓝色的最低点,但loss有可能“卡”在左侧的局部极小值中,也就是图中红线所走的路径。