深度学习

深度学习是一种基于人工神经网络的机器学习方法,它通过多层神经网络对数据进行建模和学习,从而使计算机能够自动从数据中提取特征并进行预测。深度学习在图像处理、语音识别、自然语言处理等领域取得了显著的突破,特别是在大数据和强大计算能力的支持下,深度学习已成为解决复杂问题的主要技术。

深度学习时代下的语义分割综述

语义分割一直是计算机视觉中十分重要的领域,随着深度学习的流行,语义分割任务也得到了大量的进步。本文首先阐释何为语义分割,然后再从论文出发概述多种解决方案,并介绍目前语义分割领域主流的数据集。本文由浅层模型到深度模型,简要介绍了语义分割各种技术。本文简要地概述了每一篇重要论文的精要和亮点,希望能给读者一些指南。

深度学习模型压缩与加速综述

目前在深度学习领域分类两个派别,一派为学院派,研究强大、复杂的模型网络和实验方法,为了追求更高的性能;另一派为工程派,旨在将算法更稳定、高效的落地在硬件平台上,效率是其追求的目标。本文主要介绍深度学习模型压缩和加速算法的三个方向,分别为加速网络结构设计、模型裁剪与稀疏化、量化加速。

深度学习的“警察”与“小偷”

深度学习对抗样本(Adversarial Examples)的概念最早是Christian Szegedy 等人在ICLR2014发表的论文中提出来的,即在数据集中通过故意添加细微的干扰所形成输入样本,受干扰之后的输入导致模型以高置信度给出了一个错误的输出。

深度学习中梯度下降的两个阶段

事实上,在神经网络中,我们几乎总是选择我们的模型作为运行随机梯度下降的输出。对线性模型来说,我们分析SGD如何作为一个隐式调节器。对于线性模型,SGD总是收敛到一个小规范的解决方案。因此,算法本身隐含地规范了解决方案。