机器学习

机器学习(Machine Learning,简称ML)是一种人工智能(AI)的分支,致力于研究让计算机系统能够从数据中学习并自动改进性能的算法和技术。机器学习使计算机系统能够从经验中学习,而不需要明确地进行编程。

机器学习项目必经十大磨难,看看自己渡过几劫了?

随着机器学习领域和技术本身的发展,项目中涉及的阶段和工作流程也在不断发展。支持GPU的移动设备的出现为传统机器学习项目的工作流程引入了一个新阶段。新阶段的出现又造就了新的角色和职位。

什么是监督学习、无监督学习、强化学习、弱监督学习、半监督学习、多示例学习?

随着机器学习问题不断深入人心,人们也将现实中遇到不同的问题分为不同的学习方式,其中,最基础的应属监督学习,无监督学习和强化学习了。

机器学习:常见统计学习方法总结

判别模型和生成模型总结:判别方法:由数据直接学习决策函数 Y = f(X),或者由条件分布概率 P(Y|X)作为预测模型,即判别模型。生成方法:由数据学习联合概率密度分布函数 P(X,Y),然后求出条件概率分布P(Y|X)作为预测的模型,即生成模型。由生成模型可以得到判别模型,但由判别模型得不到生成模型。

机器学习——偏差Bias 与方差Variance

Error = Bias + Variance ,Error反映的是整个模型的准确度, Bias反映的是模型在样本上的输出与真实值之间的误差,即模型本身的精准度, Variance反映的是模型每一次输出结果与模型输出期望之间的误差,即模型的稳定性。