图像识别

图像识别是计算机视觉中的一个关键技术,旨在使计算机能够“看懂”图像并从中识别出特定的对象、场景或活动。它通过分析图像的像素、纹理、形状等特征,利用机器学习或深度学习模型识别图像中的内容。图像识别广泛应用于人脸识别、自动驾驶、工业检测、医疗诊断等领域,帮助系统做出智能决策。

可以提高你的图像识别模型准确率的7个技巧

假定,你已经收集了一个数据集,建立了一个神经网络,并训练了您的模型。但是,尽管你投入了数小时(有时是数天)的工作来创建这个模型,它还是能得到50-70%的准确率。这肯定不是你所期望的。本文是一些提高模型性能指标的策略或技巧,可以大大提升你的准确率。

深度学习与传统图像识别

深度学习主要是数据驱动进行特征提取,根据大量样本的学习能够得到深层的、数据集特定的特征表示,其对数据集的表达更高效和准确,所提取的抽象特征鲁棒性更强,泛化能力更好,并且可以是端到端的。缺点是样本集影响较大,算力要求较高。

如何利用CNN实现图像识别的任务?

输入层读入经过规则化(统一大小)的图像,每一层的每个神经元将前一层的一组小的局部近邻的单元作为输入,也就是局部感受野和权值共享,神经元抽取一些基本的视觉特征,比如边缘、角点等,这些特征之后会被更高层的神经元所使用。

AI图像识别:人类看的是形状,算法看的是纹理

图片中的动物轮廓是猫,但是猫披着大象皮肤纹理,将图片交给人识别,人会说是猫,如果给计算机视觉算法处理,它会说是大象。德国研究人员认为:人看的是形状,计算机看的是纹理。这一发现相当有趣,但它证明计算机算法离人类视觉还有很远距离。

为什么图像识别AI会犯这些“低级错误”?

目前的人工智能技术已经非常擅长识别图像中的物体,但仍然很容易犯些“低级错误”。在部分情况下,只需在人眼不可见的静态噪声中添加一些可选的笔触或图层,就可以“愚弄”AI图像识别系统,这有时甚至会造成致命的后果。