图像处理之深度学习
demi 在 周二, 03/19/2019 - 10:32 提交
针对模糊图像的处理,个人觉得主要分两条路,一种是自我激发型:基于图像处理的方法,如图像增强和图像复原,以及曾经很火的超分辨率算法;另外一种属于外部学习型:就如同照葫芦画瓢一样的道理,其算法主要是深度学习中的卷积神经网络......接下来我们一起学习这两条路的具体方式。
图像处理是对图像进行操作和分析的技术,目的是提高图像质量或者从图像中提取有用的信息。常见的图像处理技术包括图像增强、图像修复、噪声去除、图像分割等。图像处理广泛应用于医学影像、卫星遥感、安防监控、自动驾驶等领域,通过处理图像中的像素,能够实现对图像内容的识别、分析和改进。
针对模糊图像的处理,个人觉得主要分两条路,一种是自我激发型:基于图像处理的方法,如图像增强和图像复原,以及曾经很火的超分辨率算法;另外一种属于外部学习型:就如同照葫芦画瓢一样的道理,其算法主要是深度学习中的卷积神经网络......接下来我们一起学习这两条路的具体方式。
傅立叶变换在图像处理中有非常重要的作用。因为不仅傅立叶分析涉及图像处理很多方面,傅立 叶改进算法,比如离散余弦变换,gabor与小波在图像处理中也有重要的分量。绝大部分噪音都是图像的高频分量,通过低通滤波器来滤除高频——噪声;边缘也是图像的高频分量,可以通过添加高频分量来增强原始图像的边缘......
图像去噪是指减少数字图像中噪声的过程称为图像去噪。现实中的数字图像在数字化和传输过程中常受到成像设备与外部环境噪声干扰等影响,称为含噪图像或噪声图像。噪声分类——按照噪声组成来分:加性噪声;乘性噪声;量化噪声......
在研究的过程中,有时候会碰到很多有意思的图像处理算法,算法极具新意,并且能够产生非常有意思的结果。图像镶嵌也叫图像混合(Image Blending)、图像剪接(Image Editing),是通过特定的图像处理方法将本来毫无关系的两幅图无缝剪辑到一起,并能够很好地融合两者之间的剪接处,产生以假乱真的效果,不信我们就来看看。
计算机图形学中不可避免的会涉及到图像分析与处理的相关知识,前些时间也重温了下常用到的采样、重建以及纹理贴图等内容,并对其中的走样与反走样有了更多的认识,这里小结一下。
本文重点介绍了图像恢复这个任务,以及如何使用深度图像先验来解决此任务。图像恢复是指从其劣质图像中恢复未知真实图像的任务。 图像损耗可能在图像形成,传输和存储期间发生。 该任务广泛的用于卫星成像,低光摄影。由于数字技术的进步,计算和通信技术从退化图像恢复清晰图像非常重要。
栅格重采样是将输入图像的像元值或推导值赋予输出图像中每个像元的过程。当输入图像和输出图像的位置(经过几何变换或投影设置等操作)或像元大小(即栅格影像分辨率)发生变化时,都需要进行栅格重采样。此外,栅格重采样是栅格数据在空间分析中处理栅格分辨率匹配问题的常用数据处理方法,为了便于分析,通常将不同的分辨率通过栅格重采样转化为相同的分辨率。
位图文件有两种存储像素数据的格式。16777216色(真彩色)的图像,一个像素的颜色可以用24位数据表示。256色的图像可以用调色板对颜色的信息进行编码,一个像素的值对应的是调色板的索引,而不是直接对应一个像素的颜色,调色板的索引映射为像素的颜色。
一个简单的灰度图判定方法,因为项目需要需要做一个简单的灰度图判断,当然,如果是完整的一幅图,判断是否是灰度,当然是直接进行通道判断就行了,灰度图的通道数为一,rgb图片的通道数为三。问题是如何判断一个rgb图片中其中一部分是否是灰度图,故而有了本次简单的文档说明。
滤波也许可以说是图像处理和计算机视觉最基础的操作。术语”滤波“最宽泛的理解,即滤波后的图像在某一指定位置的像素值是输入图像在同一位置的 某邻域内的所有像素值的函数。例如,高斯低通滤波计算这个邻域内所有像素值的一个权重平均值,其中权重随着距离邻域中心越远而减小。