AI有多接近你,你又有多害怕AI
demi 在 周三, 01/30/2019 - 09:19 提交
人工智能正逐渐渗透进日常生活,而人们一边享用一边恐惧。日前,英国《自然·展望》杂志发表长文,叙述了人工智能正逐渐渗透进我们的日常生活,而人们正一边享用一边恐惧着,这种情绪下,正在大力推动下一场自动化变革的技术人员则需要直面一个严肃的议题:公众接下来究竟想要什么。
人工智能正逐渐渗透进日常生活,而人们一边享用一边恐惧。日前,英国《自然·展望》杂志发表长文,叙述了人工智能正逐渐渗透进我们的日常生活,而人们正一边享用一边恐惧着,这种情绪下,正在大力推动下一场自动化变革的技术人员则需要直面一个严肃的议题:公众接下来究竟想要什么。
人工智能的目标就是最优化:在复杂环境与多体交互中做出最优决策。几乎所有的人工智能问题最后都会归结为一个优化问题的求解,因而最优化理论是人工智能必备的基础知识。
最优化理论(optimization)研究的问题是判定给定目标函数的最大值(最小值)是否存在,并找到令目标函数取到最大值(最小值)的数值。
要实现最小化或最大化的函数被称为目标函数(objective function)或评价函数,大多数最优化问题都可以通过使目标函数 f ( x ) 最小化解决,最大化问题则可以通过最小化 − f( x ) 实现。
实际的最优化算法既可能找到目标函数的全局最小值(global minimum),也可能找到局部极小值(local minimum),两者的区别在于全局最小值比定义域内所有其他点的函数值都小;而局部极小值只是比所有邻近点的函数值都小。
理想情况下,最优化算法的目标是找到全局最小值。但找到全局最优解意味着在全局范围内执行搜索。
目前实用的最优化算法都是找局部极小值。
随着企业和政府对网络安全的认识逐渐提高,虽然每年都有数十亿美元的资金投入到网络安全领域,但网络攻击事件仍然层出不穷,从2016年开始,黑客攻击开始了井喷。对于人工智能技术,尽管争论从未停止,但并不妨碍人们对它的利用。原因有三方面......
人工智能一词是在1956年的达特茅斯会议上被首次提出来的。作为一门新兴的交叉学科,人工智能在当今脑科学、认知科学飞速发展的基础下,被称为本世纪三大科技成就之一。目前来说,人工智能主要涉及计算机领域,它试图了解人类智能的实质,进而能够生产出一种媲美人类智能的软件系统、机器人、仿生人或者生化人,最后乃至能够全面超越当今人类的“新人类”。
大数据、人工智能是目前大家谈论比较多的话题,它们的应用也越来越广泛、与我们的生活关系也越来越密切,影响也越来越深远,其中很多已进入寻常百姓家,如无人机、网约车、自动导航、智能家电、电商推荐、人机对话机器人等等。
目前英国在AI领域是全球的领导者,并且希望在未来发挥更大的作用。2018年是AI在英国发展的关键一年,所以我们想花费一点时间分享一下过去12个月里发生的一些重大事件。
随着现代科学技术的发展以及人民生活水平的提高,智能设备的普及率已经越来越高,住宅家居智能化将是一个重要的发展趋势。近年来,国内外对智能家居的研究初具规模,而现有的家居监控系统智能化程度比较低,无法更好的适应新的应用需求,因此开发出更安全便利的智能家居系统具有十分重要的意义。
作者:李颋(中国电子学会研究咨询中心主任,凌霞,系中国电子学会博士)
人工智能作为新一轮产业变革的核心驱动力,正在释放历次科技革命和产业变革积蓄的巨大能量,持续探索新一代人工智能应用场景,将重构生产、分配、交换、消费等经济活动各环节,催生新技术、新产品、新产业。
刚刚过去的2018年,人工智能从基础研究、技术到产业,都进入了高速增长期。根据中国电子学会的统计:2018年全年,全球人工智能核心产业市场规模超过555.7亿美元,相较于2017年同比增长50.2%。数据显示,全球人工智能的发展呈现三足鼎立之势,主要集中在美国、欧洲、中国。
美国硅谷是当今人工智能基础层和技术层产业发展的重点区域,聚集了人工智能企业2905家,以谷歌、微软、亚马逊等为代表形成集团式发展,同时在人工智能企业数量、投融资规模、专利数量等方面全球领先。
据外媒The Verge报道,在不久的将来,面部识别扫描或可以成为标准体检的一部分。研究人员已经展示了算法如何帮助识别与遗传性疾病相关的面部特征,从而加速临床诊断。在本月发表在《自然·医学》杂志杂志上的一项研究中,美国公司FDNA发布了软件DeepGestalt的新测试。
2012年左右,多伦多大学的研究人员首次使用深度学习来赢下了ImageNet,它是一项非常受欢迎的计算机图像识别竞赛。对于那些参与AI行业的人来说,这是一个大问题,因为计算机视觉是使计算机能够理解图像背景的学科,也是人工智能中最具挑战性的领域之一。
当然,与任何其他产生巨大影响的技术一样,深度学习成为炒作的焦点。不同的公司和组织开始应用它来解决不同的问题(或假装应用它)。许多公司开始使用深度学习和先进的人工智能技术重塑其产品和服务。
与此同时,媒体也经常撰写有关人工智能和深度学习的故事,这些故事充满误导性,并且大多是由那些对技术运作方式没有正确理解的人撰写。他们大多使用关于人工智能的耸人听闻的头条来博眼球,这些也促成了围绕深度学习的炒作。
经过媒体的炒作后,许多专家认为深度学习被夸大了,它最终会消退并可能导致另一个人工智能冬季,从而使人们对人工智能的兴趣和资金投入大幅下降。其中一些著名专家也承认,深度学习已经触底,其中包括一些深入学习的先驱者。
但根据著名数据科学家和深度学习研究员杰里米·霍华德的说法,“深度学习过度夸大”的论点有点夸张。霍华德是fast.ai的创始人,fast.ai是一个非营利性的在线深度学习课程。