深度学习:几种模型小型化的方法
demi 在 周二, 12/10/2019 - 17:09 提交
现在深度学习模型开始走向应用,因此我们需要把深度学习网络和模型部署到一些硬件上,而现有一些模型的参数量由于过大,会导致在一些硬件上的运行速度很慢,所以我们需要对深度学习模型进行小型化处理。模型小型化旨在保证模型效果不会明显下降的情况下降低模型的参数量,从而提高模型的运算速度。
现在深度学习模型开始走向应用,因此我们需要把深度学习网络和模型部署到一些硬件上,而现有一些模型的参数量由于过大,会导致在一些硬件上的运行速度很慢,所以我们需要对深度学习模型进行小型化处理。模型小型化旨在保证模型效果不会明显下降的情况下降低模型的参数量,从而提高模型的运算速度。
数据预处理(data pre-processing)是指在主要的处理以前对数据进行的一些处理。现实世界中数据大体上都是不完整,不一致的脏数据,无法直接进行数据挖掘,或挖掘结果差强人意。为了提高数据挖掘的质量产生了数据预处理技术。
最新数据显示,全球正陷入一场前所未有的人工智能军备竞赛中,美国和中国在这场可能彻底重塑世界的竞赛中遥遥领先。
与机器可以实现的功能相比,在许多方面,人类驾驶员所拥有的感知能力仍然遥遥领先,而且在许多关键领域我们仍然无法提供能够实现SAE 4级自动化所需性能和功能的传感器。在本文,我们涉及了一些特别具有挑战性或目前完全无法解决的情境来加以说明......
欠拟合是指模型在训练集、验证集和测试集上均表现不佳的情况;过拟合是指模型在训练集上表现很好,到了验证和测试阶段就大不如意了,即模型的泛化能力很差。
说到正则化大家应该都不陌生,这个在机器学习和深度学习中都是非常常见的,常用的正则化有L1正则化和L2正则化。提到正则化大家就会想到是它会将权重添加到损失函数计算中来降低模型过拟合的程度。了解更多一点的同学还会说,L1正则化会让模型的权重参数稀疏化(部分权重的值为0),L2正则化会让模型的权重有趋于0的偏好。
Dropout是在《ImageNet Classification with Deep Convolutional》这篇论文里提出来为了防止神经网络的过拟合。它的主要思想是让隐藏层的节点在每次迭代时(包括正向和反向传播)有一定几率(keep-prob)失效。
谣言止于智者,谣言止于科学。本文从科学的角度带你去了解5G为什么对人类几乎是安全的。在追求真理的过程中,我们应该依靠的是科学证据,而不是恐惧和意识形态来决定事物是否应该存在与发展这个问题。
Physically-based rendering (PBR) 说起来是令人兴奋的,如果不负责任的说,它是未来实时渲染的趋势。 这个术语经常被人提及, 也让人产生疑惑:具体到底是个什么鬼呢。
没有什么比做预测更难的了,研究人员根据过去12个月所发生的事情,安全领域专家的知识和对APT攻击的观察研究,对未来做出如下预测。