【AI案例实践】基于深度学习的超分辨率技术
demi 在 周二, 05/24/2022 - 09:33 提交
Imagination 的 IMG 4系列NNA AI 计算引擎提高了计算能力,可以提供低功耗、低面积和系统带宽可扩展的卷积神经网络加速,使其成为部署Visidon最先进的基于深度学习的超分辨率解决方案的完美平台。
深度学习是一种基于人工神经网络的机器学习方法,它通过多层神经网络对数据进行建模和学习,从而使计算机能够自动从数据中提取特征并进行预测。深度学习在图像处理、语音识别、自然语言处理等领域取得了显著的突破,特别是在大数据和强大计算能力的支持下,深度学习已成为解决复杂问题的主要技术。

Imagination 的 IMG 4系列NNA AI 计算引擎提高了计算能力,可以提供低功耗、低面积和系统带宽可扩展的卷积神经网络加速,使其成为部署Visidon最先进的基于深度学习的超分辨率解决方案的完美平台。

最近Jeff Dean发表了一篇论文,回顾了深度学习高速发展的黄金十年,软硬件发展是核心,并指出三个未来有潜力的研究方向:稀疏模型、AutoML和多任务训练。

据报道称,由于采用基于云的技术和在大数据中使用深度学习系统,深度学习的使用在过去十年中迅速增长,预计到 2028 年,深度学习的市场规模将达到 930 亿美元。

深度学习是机器学习算法的子类,其特殊性是有更高的复杂度。因此,深度学习属于机器学习,但它们绝对不是相反的概念。我们将浅层学习称为不是深层的那些机器学习技术。

人工智能发展到2022年,技术变革到什么水平了呢?今天,我们来看看2022年10大人工智能技术有哪些?

本文旨在直观系统地梳理深度学习各领域常见概念与基本思想,使读者对深度学习的重要概念与思想有一直观理解,做到“知其然,又知其所以然”,从而降低后续理解论文及实际应用的难度。

飞桨框架的核心技术,主要包括前端语言、组网编程范式、核心架构、算子库以及高效率计算核心五部分。

在本文中,我们将分享一些将图像转换为特征向量的技术,可以在每个分类模型中使用。

在深度学习领域,被称为“目标检测”的子学科是包括通过图片、视频或网络摄像头来识别对象的过程。

在过去的 10 年里,性能最好的人工智能系统都是由一种称为「深度学习」的技术产生的。