深度学习

深度学习是一种基于人工神经网络的机器学习方法,它通过多层神经网络对数据进行建模和学习,从而使计算机能够自动从数据中提取特征并进行预测。深度学习在图像处理、语音识别、自然语言处理等领域取得了显著的突破,特别是在大数据和强大计算能力的支持下,深度学习已成为解决复杂问题的主要技术。

Hinton,Lecun和Bengio三巨头联手再发万字长文:深度学习的昨天、今天和明天

2018图灵奖获得者Yoshua Bengio, Yann LeCun和Geoffrey Hinton再次受ACM邀请共聚一堂,共同回顾了深度学习的基本概念和一些突破性成果,讲述了深度学习的起源、发展及未来的发展面临的挑战。

清华大学计图团队首创三角网格面片上的卷积神经网络,首次取得100%正确率

清华大学 Jittor 团队提出了一种基于细分结构的网格卷积网络 SubdivNet。该方法首先将输入网格进行重网格化(remesh),构造细分结构,得到一般网格的多分辨率表示,并提出了直观灵活的面片卷积方法、上 / 下采样方法,并将成熟的图像网络架构迁移到三维几何学习中。