深度学习

深度学习是一种基于人工神经网络的机器学习方法,它通过多层神经网络对数据进行建模和学习,从而使计算机能够自动从数据中提取特征并进行预测。深度学习在图像处理、语音识别、自然语言处理等领域取得了显著的突破,特别是在大数据和强大计算能力的支持下,深度学习已成为解决复杂问题的主要技术。

打开AI的黑匣子:“可解释的”人工智能(XAI)认知攻略!

2019年,欧盟出台的《人工智能道德准则》中明确提出,人工智能的发展方向应该是“可信赖的”,能够包含安全、隐私和透明、可解释等多个方面。但随着人工智能技术不断普及,由此产生的风险也浮出水面,主要体现在两大方面:1、信任危机,即能否信任和依赖人工智能算法输出的结果。2、道德危机,Deepfake技术的出现在带来新鲜感的同时,也引发了人们对于深度学习和人工智能技术滥用的担忧。

邵岭教授团队提出息肉分割网络PraNet,计图框架下推理速度大幅提升

计图 (Jittor) 是清华大学自主研发,于2020年3月开源的深度学习框架。Jittor框架因其底层使用了元算子和统一计算图,从而大大提升了深度学习框架的性能和灵活性。最近Jittor医学图像智能分割模型库 JMedSeg的发布,直接为智慧医疗相关领域赋能,促进了研究人员对于算法模型的开发与部署。

深度学习的未来在光子——光计算可以大幅减少神经网络的能源需求

过去二十多年来,深度学习需要越来越多的乘法累加运算,计算机的性能也基本遵循摩尔定律大幅增长。然而,随着半导体工艺发展到临近极限,摩尔定律已经失去动力,继续保持成长趋势是一个极大的挑战。

Hinton,Lecun和Bengio三巨头联手再发万字长文:深度学习的昨天、今天和明天

2018图灵奖获得者Yoshua Bengio, Yann LeCun和Geoffrey Hinton再次受ACM邀请共聚一堂,共同回顾了深度学习的基本概念和一些突破性成果,讲述了深度学习的起源、发展及未来的发展面临的挑战。