基于梯度编辑的鲁棒性人脸识别方法SFace
demi 在 周三, 07/21/2021 - 09:37 提交
人脸识别是一项经典的人工智能应用。得益于海量的训练数据和深度学习的技术发展,人脸识别取得了突破性的性能提升,成为一项广泛应用的生物识别技术。
深度学习是一种基于人工神经网络的机器学习方法,它通过多层神经网络对数据进行建模和学习,从而使计算机能够自动从数据中提取特征并进行预测。深度学习在图像处理、语音识别、自然语言处理等领域取得了显著的突破,特别是在大数据和强大计算能力的支持下,深度学习已成为解决复杂问题的主要技术。
人脸识别是一项经典的人工智能应用。得益于海量的训练数据和深度学习的技术发展,人脸识别取得了突破性的性能提升,成为一项广泛应用的生物识别技术。
2018图灵奖获得者Yoshua Bengio, Yann LeCun和Geoffrey Hinton再次受ACM邀请共聚一堂,共同回顾了深度学习的基本概念和一些突破性成果,讲述了深度学习的起源、发展及未来的发展面临的挑战。
机器学习领域中所谓的降维就是指采用某种映射方法,将原高维空间中的数据点映射到低维度的空间中。
本博客主要内容为图书《神经网络与深度学习》和National Taiwan University (NTU)林轩田老师的《Machine Learning》的学习笔记,因此在全文中对它们多次引用。
清华大学 Jittor 团队提出了一种基于细分结构的网格卷积网络 SubdivNet。该方法首先将输入网格进行重网格化(remesh),构造细分结构,得到一般网格的多分辨率表示,并提出了直观灵活的面片卷积方法、上 / 下采样方法,并将成熟的图像网络架构迁移到三维几何学习中。
超分辨率重建技术(Super-Resolution)是指从观测到的低分辨率图像重建出相应的高分辨率图像。SR可分为两类:① 从多张低分辨率图像重建出高分辨率图像;② 从单张低分辨率图像重建出高分辨率图像。
机器学习领域是巨大的,为了学习不迷路,可以从以下列表帮助学习。它概述深度学习的一些学习细节。
本文总结了文本分类相关的深度学习模型、优化思路以及今后可以进行的一些工作。
神经网络是深度学习的载体,而神经网络模型中,最经典非RNN模型所属,尽管它不完美,但它具有学习历史信息的能力。
Precision精确率, Recall召回率,是二分类问题常用的评价指标。