CNN中卷积层参数量与输出特征图尺寸的计算公式
demi 在 周五, 09/27/2019 - 11:44 提交
卷积层输入特征图(input feature map)的尺寸为
卷积(Convolution)是一种数学运算,常用于信号处理和图像处理领域,也在深度学习中的卷积神经网络(CNN)中发挥着关键作用。简单来说,卷积是通过在两个函数之间滑动并在每个位置上计算它们的积分来生成一个新的函数。
在图像处理中,卷积通常用于图像的特征提取。
卷积层输入特征图(input feature map)的尺寸为
卷积是深度学习中的基础运算,那么卷积运算是如何加速到这么快的呢,掰开揉碎了给你看。
卷积有一种模糊(粗粒度)的效果,这种模糊化(忽视掉一些不必要的细节,在加上 maxpooling 的存在,又会去捕捉最显著的特征,这种忽略次要目标,突出重要目标)。也就是 CNN 天然具有的性质,当其应用在 Text(文本处理)时,比如 fraud detection,欺诈检测,一个人抄袭别人的答案,但又机智地做了一些修改的动作(会被 conv,忽视),但一些核心的东西,两人之间一样的内容(执行 maxpooling 时),会被检测出来。
卷积神经网络是一个多层的神经网络,每层由多个二维平面组成,而每个平面由多个独立神经元组成。
一般而言,深度卷积网络是一层又一层的。层的本质是特征图, 存贮输入数据或其中间表示值。一组卷积核则是联系前后两层的网络参数表达体, 训练的目标就是每个卷积核的权重参数组。
卷积这个东东是“信号与系统”中论述系统对输入信号的响应而提出的。因为是对模拟信号论述的,所以常常带有繁琐的算术推倒,很简单的问题的本质常常就被一大堆公式淹没了,那么卷积究竟物理意义怎么样呢?
卷积神经网络的卷积核大小、卷积层数、每层map个数都是如何确定下来的呢?看到有些答案是刚开始随机初始化卷积核大小,卷积层数和map个数是根据经验来设定的,但这个里面应该是有深层次原因吧?
我们都知道,卷积核的作用在于特征的抽取,越是大的卷积核尺寸就意味着更大的感受野,当然随之而来的是更多的参数。早在1998年,LeCun大神发布的LetNet-5模型中就会出,图像空域内具有局部相关性,卷积的过程是对局部相关性的一种抽取。 但是在学习卷积神经网络的过程中,我们常常会看到一股清流般的存在—1*1的卷积!
卷积和反卷积在CNN中经常被用到,想要彻底搞懂并不是那么容易。本文主要分三个部分来讲解卷积和反卷积,分别包括概念、工作过程、代码示例,其中代码实践部分主结合TensorFlow框架来进行实践。给大家介绍一个卷积过程的可视化工具,这个项目是github上面的一个开源项目。
这是一篇关于CNN(卷积神经网络)的简单指南,本文将介绍CNN如何工作,以及如何在Python中从头开始构建一个CNN。