卷积

卷积(Convolution)是一种数学运算,常用于信号处理和图像处理领域,也在深度学习中的卷积神经网络(CNN)中发挥着关键作用。简单来说,卷积是通过在两个函数之间滑动并在每个位置上计算它们的积分来生成一个新的函数。

在图像处理中,卷积通常用于图像的特征提取。

数字图像处理中滤波和卷积操作详细说明

对图像和滤波矩阵进行逐个元素相乘再求和的操作就相当于将一个二维的函数移动到另一个二维函数的所有位置,这个操作就叫卷积或者协相关。卷积和协相关的差别是,卷积需要先对滤波矩阵进行180的翻转,但如果矩阵是对称的,那么两者就没有什么差别了。

科普:反卷积原理

反卷积,可以理解为卷积操作的逆运算。这里千万不要当成反卷积操作可以复原卷积操作的输入值,反卷积并没有那个功能,它仅仅是将卷积变换过程中的步骤反向变换一次而已,通过将卷积核转置,与卷积后的结果再做一遍卷积,所以它还有个名字叫转置卷积。

关于卷积神经网络体系设计的理论实现

卷积神经网络,简称CNN,常用于视觉图像分析的深度学习的人工神经网络。形象地来说,这些网络结构就是由生物的神经元抽象拟合而成的。正如,每个生物神经元可以相互通信一般,CNN根据输入产生类似的通信输出。

卷积网络中的通道(Channel)和特征图

今天介绍卷积网络中一个很重要的概念,通道(Channel),也有叫特征图(feature map)的。卷积网络中主要有两个操作,一个是卷积(Convolution),一个是池化(Pooling)。其中池化层并不会对通道之间的交互有影响,只是在各个通道中进行操作。

为什么要用空洞卷积?

我们知道正常的卷积已经能够提取特征了,那么空洞卷积又是做什么的呢?空洞卷积(atrous convolutions),又称扩张卷积(dilated convolutions),向卷积层引入了一个成为“扩张率(dilated rate)”的新参数,该参数定义了卷积核处理数据时各值的间距。