机器学习算法基础概念总结

10折交叉验证:英文名是10-fold cross-validation,用来测试算法的准确性。是常用的测试方法。将数据集分成10份。轮流将其中的9份作为训练数据,1分作为测试数据,进行试验。每次试验都会得出相应的正确率(或差错率)。10次的结果的正确率(或差错率)的平均值作为对算法精度的估计,一般还需要进行多次10折交叉验证,在求其平均值,对算法的准确性进行估计。

自然语言处理之条件随机场CRF(二)

在条件随机场CRF(一)中我们总结了CRF的模型,主要是linear-CRF的模型原理。本文就继续讨论linear-CRF需要解决的三个问题:评估,学习和解码。这三个问题和HMM是非常类似的,本文关注于第一个问题:评估。第二个和第三个问题会在下一篇总结。

无人驾驶不存在「绝对安全」

许多消费者认为只有当无人驾驶做到「绝对安全」时才能被广泛应用,甚至进入法律。关于这一点,之前有文章已经提到,无人驾驶更切合实际的标准应该是比人类驾驶水平足够优秀即可,因为无人驾驶不可能做到「绝对安全」。

图像处理的数学方法

数字图像处理技术的研究与开发对数学基础的要求很高,一些不断涌现的新方法中,眼花缭乱的数学推导令很多期待深入研究的人望而却步。图像处理研究中所需的数学原理基础,主要涉及微积分、向量分析、场论、泛函分析、偏微分方程、复变函数、变分法等。

未来已来:5G将在这88个方面影响我们的工作和生活

作为备受瞩目的下一代移动通信网络,全球围绕5G的测试、布局与谈判不断升温。而与之相关的竞争也越发白热化,公司间的竞争、城市间的竞争、国家前的竞争,5G背负着太多的使命和期待。

卷积神经网络各种池化

在卷积神经网络中,我们经常会碰到池化操作,而池化层往往在卷积层后面,通过池化来降低卷积层输出的特征向量,同时改善结果(不易出现过拟合)。图像具有一种"静态性"的属性,这也就意味着在一个图像区域有用的特征极有可能在另一个区域同样适用。

图像梯度的基本原理

当用均值滤波器降低图像噪声的时候,会带来图像模糊的副作用。我们当然希望看到的是清晰图像。那么,清晰图像和模糊图像之间的差别在哪里呢?从逻辑上考虑,图像模糊是因为图像中物体的轮廓不明显,轮廓边缘灰度变化不强烈,层次感不强造成的,那么反过来考虑,轮廓边缘灰度变化明显些,层次感强些是不是图像就更清晰些呢。