demi的博客

为什么AI无法解决一般智能问题?

我们什么时候才能拥有在各方面能够模仿人脑的人工智能?专家们对这个问题意见不一。但大家都同意的是,目前的人工智能系统与人类的智力相去甚远。直接表现是:AI只在特定任务中表现优异,无法将其能力扩展到其他领域。

L4级路侧需求、技术路线及痛点

在实现自动驾驶的过程中,对于车端感知的自动驾驶其由于感知范围有限,感知性能上由于传感器自身存在的限制,可能导致感知性能暂时性降低甚至失效,仅靠单车的智能,很多典型的驾驶场景是无法满足安全驾驶需求的,这也是当前主机厂开发自动驾驶系统的痛点。

LSTM原理及实现(一)

当我们处理与事件发生的时间轴有关系的问题时,比如自然语言处理,文本处理,连续几天的天气状况,语音识别,机器翻译等。在考虑这些和时间轴相关的问题时,传统的神经网络就无能为力了,因此就有了RNN。这里介绍RNN基本原理是为了铺垫我们的重点LSTM网络。

浅析边缘计算在智慧交通的应用

在5G浪潮驱动下,车路协同、智慧停车、智能交通规划、自动驾驶等应用普遍被提上日程,同时5G带来了数据量的大爆炸,越来越多的应用跑在了云端,很多具体的应用场景对延时的要求会变得非常严格,随着强实时数据的迅速攀升在边缘侧进行预先处理,于是“边缘计算”在智能交通领域应运而生。