demi的博客

谈谈深度学习中的 Batch_Size

Batch 的选择,首先决定的是下降的方向。如果数据集比较小,完全可以采用全数据集 ( Full Batch Learning )的形式,这样做至少有 2 个好处:其一,由全数据集确定的方向能够更好地代表样本总体,从而更准确地朝向极值所在的方向。其二,由于不同权重的梯度值差别巨大,因此选取一个全局的学习率很困难。

深度学习——为什么要深?

对于一个分类的问题的简化,我们可以先训练一个Basic classfier,然后将其共享给following classfier,通过多层的分类器进行特征的提取,用较少的数据就可以训练好网络。而在deep的模型当中,Basic classfier是由神经网络自己学到的,然后通过更多层的网络可以使得classfier逐渐学到更加深层次的特征。这就是deep network能够work的原因。

交叉验证(Cross Validation)原理小结

交叉验证是在机器学习建立模型和验证模型参数时常用的办法。交叉验证,顾名思义,就是重复的使用数据,把得到的样本数据进行切分,组合为不同的训练集和测试集,用训练集来训练模型,用测试集来评估模型预测的好坏。在此基础上可以得到多组不同的训练集和测试集,某次训练集中的某样本在下次可能成为测试集中的样本,即所谓“交叉”。 

Unity延迟渲染路径

当使用延迟着色,那么可以作用在对象上的光照,将没有数量限制。所有光照都会被逐像素的评估,这意味着所有光照都可以正确的被法向贴图影响,等等。此外,每个光照都可以有cookie 和 shadow。