强人工智能基本问题:神经网络分层还是不分层
demi 在 周五, 10/19/2018 - 11:30 提交
现代的大部分机器学习的算法将神经元分出了清晰的层次。所谓分层,即将神经元分为几层(也可认为是几组)。每层内的神经元没有联系,相邻的层与层之间的神经元会有两两的联系,从而形成一个关系矩阵。非相邻层的神经元之间没有联系。这里的相邻指的是神经元层次之间的关系,每层神经元有一层或者前后两层相邻。
一般神经网络的算法的神经元层数是有限的,一般是两三层。在理论上,三层神经元(包括输入、输出和隐含层,除去输入输出,也可算做只有一层)就足以解决所有问题了,因为中间的隐含层能够表达所有函数。但这只是数学上的可能性,实际中如果只用一个隐含层来实现人类智能,需要的节点数量估计近似于无穷。