语义分割

语义分割(Semantic Segmentation)是计算机视觉领域的一项重要任务,其目标是将图像中的每个像素分配到预定义的语义类别中。简而言之,它是将图像中的每个像素标记为属于特定对象或物体的一部分,从而实现像素级别的物体识别和分割。

人工智能技术在通信工程数字化设计中的应用

针对目前通信局房及其内部通信设施资源数字化工作,提出一套完整的基于人工智能的技术方案,详细论述了SLAM、三维重建、三维语义分割、目标检测、OCR识别等技术在通信机房三维重建、机柜设备属性与标签识别等方面的应用。

ACM TOG:基于超体素卷积的在线三维语义分割

近期,清华大学图形学实验室的博士后黄石生、助理研究员穆太江等和香港城市大学傅红波教授合作,提出了一种基于超体素卷积的在线三维语义分割的方法,该方法在在线场景下的三维语义分割准确性、效率性两方面达到了当前最好的水平。

常见的计算机视觉任务综述

本文将主要介绍计算机视觉中的几个重要的研究方向。主要包括图像分类、目标检测、语义分割、实例分割、全景分割等。通过对这几个计算机视觉任务的对比,我们将更好的理解每个视觉任务的含义以及应用场景。我们将通过这张对比图来对以上的概念进行说明。

深度学习时代下的语义分割综述

语义分割一直是计算机视觉中十分重要的领域,随着深度学习的流行,语义分割任务也得到了大量的进步。本文首先阐释何为语义分割,然后再从论文出发概述多种解决方案,并介绍目前语义分割领域主流的数据集。本文由浅层模型到深度模型,简要介绍了语义分割各种技术。本文简要地概述了每一篇重要论文的精要和亮点,希望能给读者一些指南。

超像素、语义分割、实例分割、全景分割,傻傻分不清?

图像分割中的一些常见的术语有:superpixels(超像素)、Semantic Segmentation(语义分割)、Instance Segmentation(实例分割)、Panoptic Segmentation(全景分割)。他们之间到底有什么区别呢?