demi的博客

目标跟踪的评价指标(OTB与VOT)

目标识别的评价指标主要有ROC曲线,missrate、FPPI、FPPW等。单图像跟踪的评价指标主要有两个,一个是pixel error,一般是算中心距离,另一个是overlap rate,区域重叠率,用重叠区域除以两个矩形所占的总面积Aoverlap /(A1+A2-Aoverlap),常常用pixel error绘制帧误差曲线,用重叠率绘制误差曲线。

机器视觉中的光源与打光

机器视觉主要解决四大问题:定位、测量、检测、识别。在机器视觉中打光和光源影响着系统的稳定性,比如在测量应用中,光照发生10%-20%的变化,就可能导致图像边缘偏移1-2个像素,这些问题在算法层面是不容易解决的。所以了解光源和打光非常重要。

常用的图像特征有哪些?

常用的图像特征有:颜色特征(描述了图像或图像区域所对应的景物的表面性质)、纹理特征(描述了图像或图像区域所对应景物的表面性质)、形状特征(各种基于形状特征的检索方法都可以比较有效地利用图像中感兴趣的目标来进行检索)、空间关系特征(是指图像中分割出来的多个目标之间的相互的空间位置或相对方向关系)。

3D视觉技术测量原理

要谈3D视觉应用方案,就必须先弄清楚光学测量分类以及其原理。光学测量分为主动测距法和被动测距法。主动测距方法的基本思想是利用特定的、人为控制光源和声源对物体目标进行照射,根据物体表面的反射特性及光学、声学特性来获取目标的三维信息。其特点是具有较高的测距精度、抗干扰能力和实时性,具有代表性的主动测距方法有结构光法、飞行时间法、和三角测距法。

有关扩大机器学习规模的五个启发

Gartner最近的一项调查显示,很多公司才刚刚开始机器学习之旅,而37%的组织已经实施了人工智能。如果你已经准备好接受机器学习,你可能先要评估十个问题或评估人工智能、机器学习和深度学习的完整指南,然后才能对机器学习进行概念验证。

傅里叶-梅林变换进行图像配准

图像配准方法主要分为三类:一种是灰度方法信息方法,另一种是基于特征的方法,可细分为特征点、直线段、边缘轮廓、特征结构以及矩不变统计特征等,还有一种就是基于变换域的方法,如相位相关、Walsh Transform等方法。傅里叶-梅林变换就是一种变换域的方法。

正则项的理解之正则从哪里来

说到分类就要说到线性可分和线性不可分。这是属于模式识别中的概念。在欧几里德几何中,线性可分是一组点的集合性质。最容易描述的情况是在二维平面中,有一些点,分别是红色的点和蓝色的点。如果我们可以使用一条直线将不同颜色的点分开,那么这些点就是线性可分的......

AI可以走多远?首先取决于无线网络与网络安全

人工智能(AI)被认为是本世纪最大的技术创新之一。然而,就像所有的创新一样,我们必须先专注于基本的应用,然后才能真正地达到目标。人工智能对于无线网络,对于必须保护它们的人,以及那些试图攻击它们的人,都具有巨大的潜力。那么,人工智能今年将如何发挥作用?它将如何塑造未来?