机器学习

解决各种机器学习中样本不均衡问题的整合

大部分分类任务中,各类别下的数据个数基本上不可能完全相等,但是一点点差异是不会产生任何影响与问题的。在现实中有很多类别不均衡问题,它是常见的,并且也是合理的,符合人们期望的。

评估机器学习模型的几种方法(验证集的重要性)

机器学习的目的是得到可以泛化(generalize)的模型,即在前所未见的数据上表现很好的模型,而过拟合则是核心难点。你只能控制可以观察的事情,所以能够可靠地衡量模型的泛化能力非常重要。

所有学机器学习的人必须要懂的5个回归损失函数

机器学习中的所有算法都依赖于函数的最小化或最大化,我们称之为“目标函数”。一组最小化的函数称为“损失函数”。损失函数是衡量预测模型在预测预期结果方面做得有多好。求函数最小值的一种常用方法是“梯度下降法”。把损失函数想象成起伏的山,而梯度下降就像从山上滑下来到达最低点。

机器学习贝叶斯超参数优化

机器学习中超参数优化的目的是找到给定机器学习算法的超参数,该算法返回在验证集上测量的最佳性能。与模型参数相比,超参数是由机器学习工程师在训练之前设置的。随机森林中的树数量是超参数,而神经网络中的权重是训练期间学习的模型参数。

机器学习需要注意的事项

大家都知道,机器学习在人工智能中是一个非常重要的内容,我们在进行学习人工智能之前要对机器学习有一定的了解,而机器学习中最重要的就是那些算法了,只有我们掌握了那些算法我们才能够更好地掌握和熟料机器学习的内容。对于机器学习我们需要清楚很多事情,我们在这篇文章中给大家总结了几点内容,希望这几点内容能够帮助大家解决更多的问题。

机器学习判别式与生成式

在机器学习中,对于监督学习我们可以将其分为两类模型:判别式模型和生成式模型。可以简单地说,生成式模型是针对联合分布进行建模,而判别式模型则针对条件分布建模。
从感性上认识,生成式能学习到更多信息,而判别式则较少,就好比学习英语,有类人只学会听懂这是英语,有类人学会了听懂这是英语并且知道说的是什么。另外,生成式模型在一定条件下也可以转换成判别式模型,比如通过贝叶斯公式进行转换。