使用SINet进行伪装目标检测
demi 在 周一, 02/08/2021 - 09:59 提交
使用深度学习检测那些伪装成背景的目标。
使用深度学习检测那些伪装成背景的目标。
模型集成是一种提升模型能力的常用方法,但也会带来推理时间的增加,在物体检测上效果如何,可以看看。
目标检测是计算机视觉领域中一个新兴的应用方向。图像分类是对图像进行分类,比如判断图像中是否是车。定位分类不仅要图片分类,而且需要确定目标在图像中的哪个位置。目标检测中要识别的对象不仅仅只有一个,目标检测要识别图像中多个对象。
本文将主要介绍计算机视觉中的几个重要的研究方向。主要包括图像分类、目标检测、语义分割、实例分割、全景分割等。通过对这几个计算机视觉任务的对比,我们将更好的理解每个视觉任务的含义以及应用场景。我们将通过这张对比图来对以上的概念进行说明。
计算机视觉的任务很多,有图像分类、目标检测、语义分割、实例分割和全景分割等,那它们的区别是什么呢?
Fast R-CNN就是在R-CNN的基础上采纳了SPP Net的方法,使得性能进一步提高。与R-CNN相比,Fast R-CNN主要有两点不同:一是最后一个卷积层加入了ROI pooling layer,二是损失函数使用了多任务损失函数(multi-task loss),将边框回归Bounding Box Regression直接加入到CNN网络中训练
R-CNN全称为Region-CNN,它可以说是第一个成功地将深度学习应用到目标检测上的算法。后面提到的Fast R-CNN、Faster R-CNN全部都是建立在R-CNN的基础上的。R-CNN遵循传统目标检测的思路,同样采用,对每个框提取特征、图像分类、非极大值抑制四个步骤进行目标检测,只不过进行了部分的改进。