深度学习与神经网络:最值得关注的6大趋势
demi 在 周三, 09/12/2018 - 11:45 提交
神经网络的基本思想是模拟计算机“大脑”中多个相互连接的细胞,这样它就能从环境中学习,识别不同的模式,进而做出与人类相似的决定。
典型的神经网络是由数千互连的人工神经元组成,神经元是构成神经网络的基本单位。这些神经元按顺序堆叠在一起,以称为层的形式形成数百万个连接。单位划分如下:
○ 输入单元:用于接收外部环境的信息;
○ 隐藏单元:隐藏层将所需的计算及输出结果传递给输出层;
○ 输出单元:输出信号表明网络是如何响应最近获得的信息。
多数神经网络都是“全连接的”,也就是说,每一个隐藏单元和输出单元都与另一边的所有单元相连接。每个单元之间的连接称为“权重”,权重可正可负,这取决于它对另一个单元的影响程度。权重越大,对相关单元的影响也就越大。
前馈神经网络是一种最简单的神经网络,各神经元分层排列。每个神经元只与前一层的神经元相连。接收前一层的输出,并输出给下一层,各层间没有反馈。是目前应用最广泛、发展最迅速的人工神经网络之一。
下面将就神经网络与深度学习发展的几大重要趋势进行讨论:
胶囊网络(Capsule Networks)