机器学习中的多分类任务详解
demi 在 周一, 08/19/2019 - 13:39 提交
现实中常遇到多分类学习任务。有些二分类学习方法可直接推广到多分类,如LR。但在更多情形下,我们是基于一些基本策略,利用二分类学习器来解决多分类问题。所以多分类问题的根本方法依然是二分类问题。
现实中常遇到多分类学习任务。有些二分类学习方法可直接推广到多分类,如LR。但在更多情形下,我们是基于一些基本策略,利用二分类学习器来解决多分类问题。所以多分类问题的根本方法依然是二分类问题。
在本章中,我们将介绍如何使用深度学习来解决计算机视觉、语音识别、自然语言处理以及其他商业领域中的应用。首先我们将讨论在许多最重要的AI 应用中所需的大规模神经网络的实现。接着,我们将回顾深度学习已经成功应用的几个特定领域。
在GPU领域,现在的手机厂商自研已经成为潮流,包括华为和三星都在GPU方面相关规划,那就意味着留给传统GPU厂商的手机客户会越来越少,且还有arm mali这样的强势竞争对手在。作为一家在低功耗、高性能图形处理方面处于领先地位的标志性公司,Imagination表示,今年晚些时候将凭借在过去20年内最重磅的全新GPU产品重回舞台中央。
在这篇文章中,你将了解在机器学习模型开发生命周期(MDLC)中应用的一些缓解偏差的策略,以实现偏差感知机器学习模型,我们主要目标是实现更高精度的模型,同时确保模型与敏感/受保护属性相比具有较小的判别性。简单来说,分类器的输出不应与受保护或敏感属性相关联。
纹理图像在局部区域内呈现了不规则性,而在整体上表现出某种规律性。纹理基元的排列可能是随机的,也可能是相互之间互相依赖,这种依赖性可能是有结构的,也可能是按某种概率分布排列的,也可能是某种函数形式。
斯坦福大学顶尖项目AI Index报告十张精选图表,全面解析关于AI快速发展的启示和见解。AI Index专注于追踪和观察AI的活动和进展,并以可靠、可验证数据为基础,促进对AI的了解。
在GIS中图形处理能力尤为重要,特别是在三维GIS技术中,为了让三维场景能够更逼真、更流畅地显示,往往需要为计算机配置一个独立显卡,利用其GPU技术来满足GIS的图形运算需求。
GPU已经不再局限于3D图形处理了,GPU通用计算技术发展已经引起业界不少的关注,事实也证明在浮点运算、并行计算等部分计算方面,GPU可以提供数十倍乃至于上百倍于CPU的性能。
深度学习在图像分类、物体检测、图像分割等计算机视觉问题上都取得了很大的进展,被认为可以提取图像高层语义特征。基于此,衍生出了很多有意思的图像应用。
本次所讲的内容为Batch Normalization,简称BN,来源于《Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift》,是一篇很好的paper。