深度学习计算模型中“门函数(Gating Function)”的作用
demi 在 周五, 08/31/2018 - 10:26 提交
作者:张俊林
看深度学习文献,门函数基本上已经是你必然会遇到的一个概念了,最典型的就是LSTM,首先上来你就得过得去“遗忘门”“输入门”“输出门”这三个门。门函数本身是个独立概念,不过LSTM使用多个门函数来组合出一个带有状态记忆的计算模型而已。随着LSTM大行其道,各种计算模型开始在计算过程中引入门函数的概念,相信这些论文你也没少看,其实这也是一种研究模式,比如你看看你手头的模型,想想能不能把门函数引进来?会不会有效?也许能走得通。
RNN概念非常直接简单很好理解,但是看到了LSTM,估计不少人会挠头。学习LSTM刚开始看模型一般都不太容易立马搞明白到底这是怎么回事?其实很重要的原因一个是一下子引入了三个门,太多,另外一个是把记忆状态存储单独独立出来,所以看上去整个逻辑很复杂,其实你要是把门函数到底在干嘛搞清楚,那么LSTM的计算逻辑是非常清晰直接好理解的,跟RNN在概念上其实是一样的。所以首先得搞明白“门函数”们到底在干什么事情。
猪家的神经网络门控系统