demi的博客

为什么GPU计算能力如此强悍?

本文对CPU与GPU中的逻辑架构进行了对比。其中Control是控制器、ALU算术逻辑单元、Cache是cpu内部缓存、DRAM就是内存。GPU设计者将更多的晶体管用作执行单元,而不是像CPU那样用作复杂的控制单元和缓存。从实际来看,CPU芯片空间的5%是ALU,而GPU空间的40%是ALU。这也是导致GPU计算能力超强的原因。

神经网络中的参数解读

神经网络是一种在很多用例中能够提供最优准确率的机器学习算法。其中参数的理解可能是我们入门的一个小小的难题,在讨论提升神经网络性能的方法,如检查过拟合、调参、超参数调节、数据增强之前,我们先简单介绍常用的神经网络参数,便于后期的学习和理解,以期更快的掌握深度学习,构建更准确的神经网络。

基于物理的渲染 – 实现篇(二)

上一篇:基于物理的渲染 – 实现篇(一)

完整的PBR光照着色器

现在唯一剩下的就是将最终的色调映射和伽玛校正的颜色传递给片段着色器的输出通道,我们就拥有了一个PBR直接光照着色器。基于完整性考虑,下面列出完整的main函数:

计算机视觉领域最全汇总(一)

计算机视觉是人工智能(AI)中的热门研究课题,它已经存在多年。然而,计算机视觉仍然是人工智能面临的最大挑战之一。在本文中,我们将探讨使用深度神经网络来解决计算机视觉的一些基本挑战。特别是,我们将研究神经网络压缩,细粒度图像分类,纹理合成,图像搜索和对象跟踪等应用。

为什么不建议在自治安全中推销机器学习

网络安全产品营销人员可能会这么向你推荐:有个新式的先进网络入侵设备,运用当前超智能的机器学习 (ML) 根除已知和未知入侵。这个 IDS 设备真是太聪明了,可以学习你网络上的正常和不正常事件,只要一发现异常就会马上通知你......但,销售说得天花乱坠,真相令人欲哭无泪。真正了解自治安全和机器学习的人不会被市场营销人员忽悠。