[深度学习] 模型集成方法
demi 在 周三, 09/18/2019 - 12:31 提交
集成学习(ensemble learning)是机器学习中一类学习算法,值训练多个学习器并将它们组合起来使用的方法。这类算法通常在实践中会取得比单个学习器更好的预测结果。
集成学习(ensemble learning)是机器学习中一类学习算法,值训练多个学习器并将它们组合起来使用的方法。这类算法通常在实践中会取得比单个学习器更好的预测结果。
通过卷积和池化等技术可以将图像进行降维,因此,一些研究人员也想办法恢复原分辨率大小的图像,特别是在语义分割领域应用很成熟。通过对一些资料的学习,简单的整理下三种恢复方法,并进行对比。
池化(Pooling)是卷积神经网络中另一个重要的概念,它实际上是一种形式的降采样。有多种不同形式的非线性池化函数,而其中“最大池化(Max pooling)”是最为常见的。它是将输入的图像划分为若干个矩形区域,对每个子区域输出最大值。
特征选择 ( Feature Selection )也称特征子集选择( Feature Subset Selection , FSS ) ,或属性选择( Attribute Selection ) ,是指从全部特征中选取一个特征子集,使构造出来的模型更好。
啥是Gamma Correction?什么是在线性空间(Linear Space)中做光照计算?先介绍下啥是Gamma(别急,先看下去,这是解释线性空间的前置知识)。这词儿N多人听说过,而且也被各种滥用。这里只解释游戏即时渲染相关的概念。首先,就是老式CRT显示器的一个问题,给显示器输入的电压和输出的亮度不成线性关系
SGD(Stochastic Gradient Descent)就是最常见的随机梯度下降。向着参数的梯度的负方向改变(梯度方向是增加的方向)。相比于普通SGD,Momentum update在深度网络中收敛更好。
物联网的出现使人们的生活更加智能化,给人们带来了许许多多的便利。但每个硬币都有两面,便利的另一面也同样存在着挑战。
连续特征离散化的基本假设,是默认连续特征不同区间的取值对结果的贡献是不一样的。特征的连续值在不同的区间的重要性是不一样的,所以希望连续特征在不同的区间有不同的权重,实现的方法就是对特征进行划分区间,每个区间为一个新的特征。常用做法,就是先对特征进行排序,然后再按照等频离散化为N个区间。
一个人工智能项目中,最重要的究竟是数据、算法还是处理过程?有人认为,数据就宛如人工智能的汽油,重点应该是干净的数据、数据科学和对数据含义的深刻理解。有些人说,没有来龙去脉的数据是没有意义的,这些数据的来龙去脉可以是其他数据、模型/算法或处理流程。让我们以一种简洁的方式探究这些人工智能的要素,以发现每种视角的优点。
采用 Gamma 校正法对输入图像进行颜色空间的标准化(归一化);目的是调节图像的对比度,降低图像局部的阴影和光照变化所造成的影响,同时可以抑制噪音的干扰......