demi的博客

卷积神经网络中的“池化层”

池化(Pooling)是卷积神经网络中另一个重要的概念,它实际上是一种形式的降采样。有多种不同形式的非线性池化函数,而其中“最大池化(Max pooling)”是最为常见的。它是将输入的图像划分为若干个矩形区域,对每个子区域输出最大值。

一定要在线性空间(Linear Space)中做光照计算

啥是Gamma Correction?什么是在线性空间(Linear Space)中做光照计算?先介绍下啥是Gamma(别急,先看下去,这是解释线性空间的前置知识)。这词儿N多人听说过,而且也被各种滥用。这里只解释游戏即时渲染相关的概念。首先,就是老式CRT显示器的一个问题,给显示器输入的电压和输出的亮度不成线性关系

特征怎么离散化?为什么需要离散化?

连续特征离散化的基本假设,是默认连续特征不同区间的取值对结果的贡献是不一样的。特征的连续值在不同的区间的重要性是不一样的,所以希望连续特征在不同的区间有不同的权重,实现的方法就是对特征进行划分区间,每个区间为一个新的特征。常用做法,就是先对特征进行排序,然后再按照等频离散化为N个区间。

人工智能的数据、算法和处理,三者缺一不可

一个人工智能项目中,最重要的究竟是数据、算法还是处理过程?有人认为,数据就宛如人工智能的汽油,重点应该是干净的数据、数据科学和对数据含义的深刻理解。有些人说,没有来龙去脉的数据是没有意义的,这些数据的来龙去脉可以是其他数据、模型/算法或处理流程。让我们以一种简洁的方式探究这些人工智能的要素,以发现每种视角的优点。