demi的博客

机器学习中的特征工程

特征:从原始数据中抽取出对结果预测更有用或表达更充分的的信息。特征工程:使用专业的背景知识和技巧处理数据,使得特征能在机器学习算法上发生更好的作用的过程。特征工程的意义:更好的特征意味着更强的灵活性+只需简单模型+更好的结果。

Vulkan的分层设计

Vulkan驱动层提供了简单高效的API。作为Vulkan API的使用者,我们要严格遵循Vulkan API的使用规则。如果我们违反了这些规则,Vulkan只会返回很少的反馈,它只会报告一部分严重和重要的错误,比如内存不够啦、指针越界啦等等。

入行深度学习之前,要做好哪些准备?

人工智能(AI)、机器学习(ML)、深度学习(DL)在当下的火热程度我就不多说了,同时又有很多人想入门进入这个领域,尤其是深度学习这个细分领域。本文将带你了解入行深度学习前需要做的一些准备。同时,你也会了解到深度学习的学习路径。

机器学习经典算法总结:强化学习

强化学习模型根据输入学习一系列动作(action),而不同的动作会逐渐累计起来,在某些时候就会得到一些奖赏(reward)。执行某个动作并不能立即获得这个最终奖赏,只能得到一个当前反馈。机器要做的是通过在环境中不断尝试而学得一个策略(policy)。