图像识别中的深度学习
demi 在 周三, 12/19/2018 - 13:45 提交
来源:《中国计算机学会通讯》
作者: 王晓刚
1、深度学习发展历史
深度学习是近十年来人工智能领域取得的重要突破。它在语音识别、自然语言处理、计算机视觉、图像与视频分析、多媒体等诸多领域的应用取得了巨大成功。现有的深度学习模型属于神经网络。神经网络的起源可追溯到20世纪40年代,曾经在八九十年代流行。神经网络试图通过模拟大脑认知的机理解决各种机器学习问题。1986年,鲁梅尔哈特(Rumelhart)、欣顿(Hinton)和威廉姆斯(Williams)在《自然》杂志发表了著名的反向传播算法用于训练神经网络,该算法直到今天仍被广泛应用。
神经网络有大量参数,经常发生过拟合问题,虽然其识别结果在训练集上准确率很高,但在测试集上效果却很差。这是因为当时的训练数据集规模都较小,加之计算资源有限,即便是训练一个较小的网络也需要很长的时间。与其他模型相比,神经网络并未在识别准确率上体现出明显的优势。