图像处理

学习结构光问题总结

点结构光只能获取单个点的深度信息,如要获取整个被测对象表面结构信息,需要沿着水平和垂直两个方向逐点扫描,效率比较低。点结构光技术只是对点状光斑进行处理,算法简单,计算复杂度小,但是需要引入扫描移动设备,以保证点光斑的遍历扫描,使得系统效率低下,难以满足实时性要求。

图像处理(1)频域滤波与空间域滤波比较

空间域滤波是在图像空间中借助模板对图像进行邻域操作,处理图像的每一个像素的取值都是根据模板对输入像素邻域内的像素值进行加权叠加得到的。空间域滤波是让图像在频域空间内某个范围的分量受到抑制,同时保证其他分量不变,从而改变图像的频率分布。空间域滤波是应用模板卷积对图像每一个像素进行局部处理。

图像边缘模式检测

图像边缘是两个具有不同灰度的均匀图像区域的边界,边缘检测是图像处理的基本问题,目的是标识数字图像中亮度变化明显的边缘点,不断向上构成更高层次的特征描述。并且剔除不相关的特征信息,保留图像重要的结构属性。

模糊图像处理方法:图像增强、图像复原、超分辨率重构

造成图像模糊的原因有很多,其中包括光学因素、大气因素、人工因素、技术因素等等,日常生产生活中对图像进行去模糊操作有其重要意义。要取得比较好的处理效果,不同原因导致的模糊往往需要不同的处理方法。从技术方面来向,模糊图像处理方法主要分为三大类,分别是图像增强、图像复原和超分辨率重构。

图像处理常用的九种插值方法

距离倒数乘方格网化方法是一个加权平均插值法,可以进行确切的或者圆滑的方式插值。方次参数控制着权系数如何随着离开一个格网结点距离的增加而下降。对于一个较大的方次,较近的数据点被给定一个较高的权重份额,对于一个较小的方次,权重比较均匀地分配给各数据点。

【收藏!】图像处理初学者应该学习的100个问题-你都学会了吗?

本文整理了图像处理初学者应该需要了解的100个基础问题,涉及读取、显示图像、操作像素、拷贝图像、保存图像、灰度化、二值化、大津算法、HSV 变换、减色处理、平均池化、最大池化、高斯滤波、中值滤波、仿射变换等100多个知识点。

图像处理-形态学

形态学又称数学形态学(Mathematical morphology),这是一门建立在格论和拓扑学基础之上的学科,是数学形态学图像处理的基本理论。常见的基本运算包括膨胀和腐蚀、开运算和闭运算、顶帽和黑帽运算等。图像的形态学处理常被用在图像的消除噪声和一些目标的特征提取上。