RNN

基于标准化生成流的人体运动风格迁移方法

近期,清华大学温玉辉博士后、刘永进教授、中科院计算所副研究员高林、香港城市大学傅红波教授等合作,在CVPR2021上发表论文,提出了一种基于标准化生成流(Glow)的自回归运动风格迁移方法,并在GitHub上开源了Jittor代码。

形象的解释:DBN、GAN、RNN、LSTM、CNN

深度信念网络(Deep Belief Nets),是一种概率生成模型,能够建立输入数据和输出类别的联合概率分布。深度信念网络通过采用逐层训练的方式,解决了深层次神经网络的优化问题,通过逐层训练为整个网络赋予了较好的初始权值,使得网络只要经过微调就可以达到最优解。