神经网络是深度学习的载体,而神经网络模型中,最经典非RNN模型所属,尽管它不完美,但它具有学习历史信息的能力。后面不管是encode-decode 框架,还是注意力模型,以及自注意力模型,以及更加强大的Bert模型家族,都是站在RNN的肩上,不断演化、变强的。
这篇文章,阐述了RNN的方方面面,包括模型结构,优缺点,RNN模型的几种应用,RNN常使用的激活函数,RNN的缺陷,以及GRU,LSTM是如何试图解决这些问题,RNN变体等。
这篇文章最大特点是图解版本,其次语言简练,总结全面。
概述
传统RNN的体系结构。Recurrent neural networks,也称为RNNs,是一类允许先前的输出用作输入,同时具有隐藏状态的神经网络。
它们通常如下所示:
对于每一时步 t , 激活函数 a<t> ,输出 y<t>被表达为:
这里 Wax,Waa,Wya,ba,by 是时间维度网络的共享权重系数
g1,g2是激活函数
下表总结了典型RNN架构的优缺点:
优点 | 缺点 |
---|---|
处理任意长度的输入 | 计算速度慢 |
模型形状不随输入长度增加 | 难以获取很久以前的信息 |
计算考虑了历史信息 | 无法考虑当前状态的任何未来输入 |
权重随时间共享 | / |
RNNs应用
RNN模型主要应用于自然语言处理和语音识别领域。下表总结了不同的应用:
RNN类型 | 图解 | 例子 |
---|---|---|
1对1 Tx = Ty = 1 |
传统神经网络 | |
1对多 Tx = 1 ,Ty > 1 |
音乐生成 | |
多对1 Tx > 1 ,Ty = 1 |
情感分类 | |
多对多 Tx = Ty |
命名实体识别 | |
多对多 Tx ≠ Ty |
机器翻译 |
损失函数
对于RNN网络,所有时间步的损失函数 是根据每个时间步的损失定义的,如下所示:
时间反向传播
在每个时间点进行反向传播。在时间步 T ,损失 相对于权重矩阵 W 的偏导数表示如下:
处理长短依赖
常用激活函数
RNN模块中最常用的激活函数描述如下:
Sigmoid | Tanh | RELU |
---|---|---|
梯度消失/爆炸
在RNN中经常遇到梯度消失和爆炸现象。之所以会发生这种情况,是因为很难捕捉到长期的依赖关系,因为乘法梯度可以随着层的数量呈指数递减/递增。
梯度修剪
梯度修剪是一种技术,用于执行反向传播时,有时遇到的梯度爆炸问题。通过限制梯度的最大值,这种现象在实践中得以控制。
门的类型
为了解决消失梯度问题,在某些类型的RNN中使用特定的门,并且通常有明确的目的。它们通常标注为 Γ,等于:
其中,W,U,b 是特定于门的系数,σ 是sigmoid函数。主要内容总结如下表:
门的种类 | 作用 | 应用 |
---|---|---|
更新门Γu | 过去对现在有多重要? | GRU, LSTM |
关联门Γr | 丢弃过去信息? | GRU, LSTM |
遗忘门Γf | 是不是擦除一个单元? | LSTM |
输出门Γo | 暴露一个门的多少? | LSTM |
GRU/LSTM
Gated Recurrent Unit(GRU)和长-短期记忆单元(LSTM)处理传统RNNs遇到的消失梯度问题,LSTM是GRU的推广。下表总结了每种结构的特征方程:
注:符号★表示两个向量之间按元素相乘。
下表总结了其他常用的RNN模型:
Bidirectional (BRNN) | Deep (DRNN) |
---|---|
参考文献:
https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-recurrent-neur...
来源:Python与算法社区-zhenguo
原文链接:https://mp.weixin.qq.com/s/F5OQKlgrDTMo_bGM4A10yQ