自然语言处理 NLP 的百年发展史
demi 在 周五, 08/28/2020 - 09:42 提交
从语言结构化理论基础,到 1750 亿参数的 GPT-3。一部 NLP 的百年发展史。
自然语言处理(Natural Language Processing,简称NLP)是人工智能的一个重要领域,专注于让计算机理解、分析和生成人类自然语言。其目的是使计算机能够像人类一样处理和理解语言,从而实现人与机器之间更自然和高效的交流。
从语言结构化理论基础,到 1750 亿参数的 GPT-3。一部 NLP 的百年发展史。
本文概述了计算机视觉、自然语言处理和机器学习中常用的优化器。此外,你会找到一个基于三个问题的指导方针,以帮助你的下一个机器学习项目选择正确的优化器。
基于人工智能的工具现在统治着每个工业部门。有了丰富的社交媒体、组织和数字平台,产生的数据中不乏有用的资源。尽管企业一直在使用这些数据来满足他们的需要,但这些数据中更重要的部分(将近80%)是非结构化的,无法访问。这是自然语言处理(NLP)来挽救这种情况的地方。NLP是人工智能的一种应用程序,它为需要快速可靠地分析文本数据的公司提供了各种各样的应用程序。
现代公司要处理大量的数据。这些数据以不同形式出现,包括文档、电子表格、录音、电子邮件、JSON以及更多形式。这类数据最常用的记录方式之一就是通过文本,这类文本通常与我们日常所使用的自然语言十分相似。
近来自然语言处理行业发展朝气蓬勃,市场应用广泛。笔者学习以来写了不少文章,文章深度层次不一,今天因为某种需要,将文章全部看了一遍做个整理,也可以称之为概述。关于这些问题,博客里面都有详细的文章去介绍,本文只是对其各个部分高度概括梳理。
自然语言处理(Natural Language Processing,NLP)是计算机科学领域与人工智能领域中的一个重要方向。它研究人与计算机之间用自然语言进行有效通信的理论和方法。融语言学、计算机科学、数学等于一体的科学。旨在从文本数据中提取信息。目的是让计算机处理或“理解”自然语言,以执行自动翻译、文本分类和情感分析等。
Encoder-Decoder(编码-解码)是深度学习中非常常见的一个模型框架,比如无监督算法的auto-encoding就是用编码-解码的结构设计并训练的;比如这两年比较热的image caption的应用,就是CNN-RNN的编码-解码框架;再比如神经网络机器翻译NMT模型,往往就是LSTM-LSTM的编码-解码框架。
在本篇我们会讨论HMM模型最后一个问题的求解,即即给定模型和观测序列,求给定观测序列条件下,最可能出现的对应的隐藏状态序列。在阅读本篇前,建议先阅读这个系列的第一篇以熟悉HMM模型。
在本篇我们会讨论HMM模型参数求解的问题,这个问题在HMM三个问题里算是最复杂的。
在条件随机场CRF(一)中我们总结了CRF的模型,主要是linear-CRF的模型原理。本文就继续讨论linear-CRF需要解决的三个问题:评估,学习和解码。这三个问题和HMM是非常类似的,本文关注于第一个问题:评估。第二个和第三个问题会在下一篇总结。