卷积神经网络基础知识和相关算法汇总版
demi 在 周三, 06/19/2019 - 16:01 提交
神经网络的发展史可以分为三个阶段,第一个阶段是Frank Rosenblatt提出的感知机模型,感知机模型的逻辑简单有效,但不能处理异或等非线性问题。第二个阶段是Rumelhart等提出的反向传播算法,该算法使用梯度更新权值,使多层神经网络的训练成为可能。第三个阶段得益于计算机硬件的发展和大数据时代的到来,促进了深度神经网络的发展。
神经网络是一种受到生物神经系统启发而设计的计算模型,用于机器学习和人工智能领域。神经网络由大量的人工神经元(模拟生物神经元)组成,这些神经元通过连接权重相互连接,形成网络结构。神经网络的目标是通过学习和调整权重来模拟和解决复杂的问题。
神经网络的发展史可以分为三个阶段,第一个阶段是Frank Rosenblatt提出的感知机模型,感知机模型的逻辑简单有效,但不能处理异或等非线性问题。第二个阶段是Rumelhart等提出的反向传播算法,该算法使用梯度更新权值,使多层神经网络的训练成为可能。第三个阶段得益于计算机硬件的发展和大数据时代的到来,促进了深度神经网络的发展。
如今,即便是结构非常复杂的神经网络,只要使用Keras,TensorFlow,MxNet或PyTorch等先进的专业库和框架,仅需几行代码就能轻松实现。而且,你不需要担心权重矩阵的参数大小,也不需要刻意记住要用到的激活函数公式,这可以极大的避免我们走弯路并大大简化了建立神经网络的工作。然而,我们还是需要对神经网络内部有足够的了解,这对诸如网络结构选择、超参数调整或优化等任务会有很大帮助。本文我们将会从数学角度来充分了解神经网络是如何工作的。
总结下深度学习里的第三类神经网络模型:玻尔兹曼机。主要关注于这类模型中的受限玻尔兹曼机(Restricted Boltzmann Machine,以下简称RBM), RBM模型及其推广在工业界比如推荐系统中得到了广泛的应用。
这篇博客将简要介绍图神经网络的原理,但是不会设计太多数学细节(因为博主数学很烂啦)。通过理解图神经网络的卷积操作,来理解其流程,再会配合代码来做简单解释。
深度学习的一个显著成功应用是嵌入,这是一种将离散变量表示为连续向量的方法。这项技术已经有了实际的应用,其中有在机器翻译中使用词嵌入和类别变量中使用实体嵌入。
SiFive公司将于6月17日在深圳举办SiFive Technology Workshop。Imagination公司作为RISC-V生态伙伴应邀参加了本次活动,并将在活动上做“神经网络加速赋能端侧智能”的主题演讲。欢迎您参加会议,了解最先进的IP技术。
通过神经网络解决多分类问题时,最常用的一种方式就是在最后一层设置n个输出节点,无论在浅层神经网络还是在CNN中都是如此......
我们知道,深度学习神经网络是模仿人类大脑神经元的运行方式而来的。在每一层中,来自上一层(或者输入源)的信号经由神经元处理,将结果和前向信号传递给下一层的神经元。
当机器学习技术用于“关键任务”时,可接受的误差范围变得非常低。在我们用模型进行自动驾驶、协助医生等场景时,我们必须确保模型所做的预测是有效的.随着模糊系统成为我们生活中越来越重要的一部分,测量预测不确定性变得越来越重要。不过好消息是:有几种技术可以测量神经网络中的不确定性,其中一些非常容易实现!
本文简要介绍了提升神经网络性能的方法,如检查过拟合、调参、超参数调节、数据增强。神经网络是一种在很多用例中能够提供最优准确率的机器学习算法。但是,很多时候我们构建的神经网络的准确率可能无法令人满意,或者无法让我们在数据科学竞赛中拿到领先名次......