人工智能和大数据存在什么隐患?
demi 在 周四, 11/28/2019 - 16:29 提交
数据稀缺到现在有大量的数据,近年来,可用的数据量呈指数级增长,大数据变得无处不在。这是由于数据记录设备数量的巨大增长,以及这些设备之间通过物联网连接。似乎每个人都有收集、分析大数据的力量。但是,大数据真的是万能的吗?毫无疑问,大数据已经在某些领域产生了至关重要的影响。
大数据是指那些规模庞大、类型多样、增长迅速的数据集,通常超过传统数据处理软件的处理能力。大数据包含结构化、半结构化和非结构化数据,并通过数据分析、挖掘和可视化技术,帮助企业和机构从中获取有价值的信息。大数据广泛应用于金融、医疗、零售、制造业等领域,通过分析海量数据,提供精准的预测、优化决策和增强竞争力。
数据稀缺到现在有大量的数据,近年来,可用的数据量呈指数级增长,大数据变得无处不在。这是由于数据记录设备数量的巨大增长,以及这些设备之间通过物联网连接。似乎每个人都有收集、分析大数据的力量。但是,大数据真的是万能的吗?毫无疑问,大数据已经在某些领域产生了至关重要的影响。
人工智能和机器学习以及不断增加的数据量正在改变当前的商业和社会格局。这些领域中出现了许多需要CIO注意的主题和问题。
大数据、人工智能是目前大家谈论比较多的话题,它们的应用也越来越广泛、与我们的生活关系也越来越密切,影响也越来越深远,其中很多已进入寻常百姓家,如无人机、网约车、自动导航、智能家电、电商推荐、人机对话机器人等等。
人工智能是近年来科技发展的重要方向,在大数据时代,对数据采集、挖掘、应用的技术越来越受到瞩目。在人工智能和大数据的开发过程中,有哪些特别需要注意的要点?
人工智能领域的算法大师、华盛顿大学教授Pedro Domingos对此进行了深入思考。
在我们新近翻译的《智能Web算法》(第2版)中,对Pedro Domingos教授的观点进行了高度的概括,提炼出12个注意点,为行业开发实践提供了重要参考:
注意点1:你的数据未必可靠
在实际应用中,有很多各种各样的原因会导致你的数据是不可靠的。因此,当你将数据用于解决问题前,必须经常留心来检查数据是否值得信赖。如果基于糟糕的数据来挖掘,无论多么聪明的人也永远只会获得糟糕的结果。下面列举了一些常见的可导致数据可靠性问题的因素:
用于开发的数据,往往和实际情况下的数据分布不同。例如也许你想把用户按照身高划分为“高”、“中等”、“矮”三档,但如果系统开发时使用的数据集里最低用户的身高是6英尺(184cm),那么很有可能你开发出来的系统里会把一个“仅有6英尺”的用户称为“矮”用户
人工智能与大数据能否纠正人类种族歧视?